Supercomputing In Japan
   HOME
*



picture info

Supercomputing In Japan
Japan operates a number of centers for supercomputing which hold world records in speed, with the K computer becoming the world's fastest in June 2011. and Fugaku took the lead in June 2020, and furthered it, as of November 2020, to 3 times faster than number two computer. The K computer's performance was impressive, according to professor Jack Dongarra who maintains the TOP500 list of supercomputers, and it surpassed its next 5 competitors combined. The K computer cost US$10 million a year to operate. Previous records Japan's entry into supercomputing began in the early 1980s. In 1982, Osaka University's LINKS-1 Computer Graphics System used a massively parallel processing architecture, with 514 microprocessors, including 257 Zilog Z8000, Zilog Z8001 Central processing unit, control processors and 257 iAPX IAPX 86, 86/20 Floating-point unit, floating-point processors. It was mainly used for rendering realistic 3D computer graphics, 3D computer graphics. It was the world's most ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Earth Simulator ES2
Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large list of largest lakes and seas in the Solar System, volumes of water can be found throughout the Solar System, only water distribution on Earth, Earth sustains liquid surface water. About 71% of Earth's surface is made up of the ocean, dwarfing Earth's polar ice, lakes, and rivers. The remaining 29% of Earth's surface is land, consisting of continents and islands. Earth's surface layer is formed of several slowly moving plate tectonics, tectonic plates, which interact to produce mountain ranges, Volcano, volcanoes, and earthquakes. Earth's liquid outer core generates the magnetic field that shapes the magnetosphere of the Earth, deflecting destructive solar winds. Atmosphere of Earth, The atmosphere of the Earth consists mostly of nitrogen and oxygen. Greenhouse gases in the atmosphere like carbon dioxide (CO2) trap a part of the Solar irradiance, energy from the Sun c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

SPARC64 VIIIfx
The SPARC64 V (''Zeus'') is a SPARC V9 microprocessor designed by Fujitsu. The SPARC64 V was the basis for a series of successive processors designed for servers, and later, supercomputers. The servers series are the SPARC64 V+, VI, VI+, VII, VII+, X, X+ and XII. The SPARC64 VI and its successors up to the VII+ were used in the Fujitsu and Sun (later Oracle) SPARC Enterprise M-Series servers. In addition to servers, a version of the SPARC64 VII was also used in the commercially available Fujitsu FX1 supercomputer. As of October 2017, the SPARC64 XII is the latest server processor, and it is used in the Fujitsu and Oracle M12 servers. The supercomputer series was based on the SPARC64 VII, and are the SPARC64 VIIfx, IXfx, and XIfx. The SPARC64 VIIIfx was used in the K computer, and the SPARC64 IXfx in the commercially available PRIMEHPC FX10. As of July 2016, the SPARC64 XIfx is the latest supercomputer processor, and it is used in the Fujitsu PRIMEHPC FX100 supercomputer. Histor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Scalar Processor
Scalar processors are a class of computer processors that process only one data item at a time. Typical data items include integers and floating point numbers. Classification A scalar processor is classified as a single instruction, single data (SISD) processor in Flynn's taxonomy. The Intel 486 is an example of a scalar processor. It is to be contrasted with a vector processor where a single instruction operates simultaneously on multiple data items (and thus is referred to as a single instruction, multiple data (SIMD) processor). The difference is analogous to the difference between scalar and vector arithmetic. The term ''scalar'' in computing dates to the 1970 and 1980s when vector processors were first introduced. It was originally used to distinguish the older designs from the new vector processors. Superscalar processor A superscalar processor (such as the Intel P5) may execute more than one instruction during a clock cycle by simultaneously dispatching multiple inst ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Processing
In computing, a vector processor or array processor is a central processing unit (CPU) that implements an instruction set where its instructions are designed to operate efficiently and effectively on large one-dimensional arrays of data called ''vectors''. This is in contrast to scalar processors, whose instructions operate on single data items only, and in contrast to some of those same scalar processors having additional single instruction, multiple data (SIMD) or SWAR Arithmetic Units. Vector processors can greatly improve performance on certain workloads, notably numerical simulation and similar tasks. Vector processing techniques also operate in video-game console hardware and in graphics accelerators. Vector machines appeared in the early 1970s and dominated supercomputer design through the 1970s into the 1990s, notably the various Cray platforms. The rapid fall in the price-to-performance ratio of conventional microprocessor designs led to a decline in vector supercomput ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Floating-point
In computing, floating-point arithmetic (FP) is arithmetic that represents real numbers approximately, using an integer with a fixed precision, called the significand, scaled by an integer exponent of a fixed base. For example, 12.345 can be represented as a base-ten floating-point number: 12.345 = \underbrace_\text \times \underbrace_\text\!\!\!\!\!\!^ In practice, most floating-point systems use base two, though base ten (decimal floating point) is also common. The term ''floating point'' refers to the fact that the number's radix point can "float" anywhere to the left, right, or between the significant digits of the number. This position is indicated by the exponent, so floating point can be considered a form of scientific notation. A floating-point system can be used to represent, with a fixed number of digits, numbers of very different orders of magnitude — such as the number of meters between galaxies or between protons in an atom. For this reason, floating-poi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Trillion (short Scale)
This list contains selected positive numbers in increasing order, including counts of things, dimensionless quantities and probabilities. Each number is given a name in the short scale, which is used in English-speaking countries, as well as a name in the long scale, which is used in some of the countries that do not have English as their national language. Smaller than (one googolth) * ''Mathematics – random selections:'' Approximately is a rough first estimate of the probability that a typing "monkey", or an English-illiterate typing robot, when placed in front of a typewriter, will type out William Shakespeare's play ''Hamlet'' as its first set of inputs, on the precondition it typed the needed number of characters. However, demanding correct punctuation, capitalization, and spacing, the probability falls to around 10−360,783. * ''Computing:'' 2.2 is approximately equal to the smallest positive non-zero value that can be represented by an octuple-precision I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

FLOPS
In computing, floating point operations per second (FLOPS, flops or flop/s) is a measure of computer performance, useful in fields of scientific computations that require floating-point calculations. For such cases, it is a more accurate measure than measuring instructions per second. Floating-point arithmetic Floating-point arithmetic is needed for very large or very small real numbers, or computations that require a large dynamic range. Floating-point representation is similar to scientific notation, except everything is carried out in base two, rather than base ten. The encoding scheme stores the sign, the exponent (in base two for Cray and VAX, base two or ten for IEEE floating point formats, and base 16 for IBM Floating Point Architecture) and the significand (number after the radix point). While several similar formats are in use, the most common is ANSI/IEEE Std. 754-1985. This standard defines the format for 32-bit numbers called ''single precision'', as well as 6 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Instruction Set
In computer science, an instruction set architecture (ISA), also called computer architecture, is an abstract model of a computer. A device that executes instructions described by that ISA, such as a central processing unit (CPU), is called an ''implementation''. In general, an ISA defines the supported instructions, data types, registers, the hardware support for managing main memory, fundamental features (such as the memory consistency, addressing modes, virtual memory), and the input/output model of a family of implementations of the ISA. An ISA specifies the behavior of machine code running on implementations of that ISA in a fashion that does not depend on the characteristics of that implementation, providing binary compatibility between implementations. This enables multiple implementations of an ISA that differ in characteristics such as performance, physical size, and monetary cost (among other things), but that are capable of running the same machine code, so that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Million
One million (1,000,000), or one thousand thousand, is the natural number following 999,999 and preceding 1,000,001. The word is derived from the early Italian ''millione'' (''milione'' in modern Italian), from ''mille'', "thousand", plus the augmentative suffix ''-one''. It is commonly abbreviated in British English as m (not to be confused with the metric prefix "m", ''milli'', for ), M, MM ("thousand thousands", from Latin "Mille"; not to be confused with the Roman numeral = 2,000), mm (not to be confused with millimetre), or mn in financial contexts. In scientific notation, it is written as or 106. Physical quantities can also be expressed using the SI prefix mega (M), when dealing with SI units; for example, 1 megawatt (1 MW) equals 1,000,000 watts. The meaning of the word "million" is common to the short scale and long scale numbering systems, unlike the larger numbers, which have different names in the two systems. The million is sometimes used in the English ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Instructions Per Second
Instructions per second (IPS) is a measure of a computer's processor speed. For complex instruction set computers (CISCs), different instructions take different amounts of time, so the value measured depends on the instruction mix; even for comparing processors in the same family the IPS measurement can be problematic. Many reported IPS values have represented "peak" execution rates on artificial instruction sequences with few branches and no cache contention, whereas realistic workloads typically lead to significantly lower IPS values. Memory hierarchy also greatly affects processor performance, an issue barely considered in IPS calculations. Because of these problems, synthetic benchmarks such as Dhrystone are now generally used to estimate computer performance in commonly used applications, and raw IPS has fallen into disuse. The term is commonly used in association with a metric prefix (k, M, G, T, P, or E) to form kilo instructions per second (kIPS), million instructions p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

NEC SX-6
The SX-6 is a NEC SX supercomputer built by NEC Corporation that debuted in 2001; the SX-6 was sold under license by Cray Inc. in the U.S. Each SX-6 single-node system contains up to eight vector processors, which share up to 64 GB of computer memory. The SX-6 processor is a single chip implementation containing a vector processor unit and a scalar processor fabricated in a 0.15 μm CMOS process with copper interconnects, whereas the SX-5 was a multi-chip implementation. The Earth Simulator is based on the SX-6 architecture. The vector processor is made up of eight vector pipeline units each with seventy-two 256-word vector registers. The vector unit performs add/shift, multiply, divide and logical operations. The scalar unit is 64 bits wide and contains a 64 KB cache. The scalar unit can decode, issue and complete four instructions per clock cycle. Branch prediction and speculative execution is supported. A multi-node system is configured by interconnecting up to 128 single-node s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]