Cylindrical Algebraic Decomposition
In mathematics, cylindrical algebraic decomposition (CAD) is a notion, along with an algorithm to compute it, that is fundamental for computer algebra and real algebraic geometry. Given a set ''S'' of polynomials in R''n'', a cylindrical algebraic decomposition is a decomposition of R''n'' into connected semialgebraic sets called ''cells'', on which each polynomial has constant sign, either +, − or 0. To be ''cylindrical'', this decomposition must satisfy the following condition: If 1 ≤ ''k'' < ''n'' and ''π'' is the projection from R''n'' onto R''n''−''k'' consisting in removing the last ''k'' coordinates, then for every pair of cells ''c'' and ''d'', one has either ''π''(''c'') = ''π''(''d'') or ''π''(''c'') ∩ ''π''(''d'') = ∅. This implies that the images by ''π'' of the cells define a cylindrical decomposition of R''n''−''k''. The notion was introduced by [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tarski–Seidenberg Theorem
In mathematics, the Tarski–Seidenberg theorem states that a set in (''n'' + 1)-dimensional space defined by polynomial equations and inequalities can be projected down onto ''n''-dimensional space, and the resulting set is still definable in terms of polynomial identities and inequalities. The theorem—also known as the Tarski–Seidenberg projection property—is named after Alfred Tarski and Abraham Seidenberg. It implies that quantifier elimination is possible over the reals, that is that every formula constructed from polynomial equations and inequalities by logical connectives (''or''), (''and''), (''not'') and quantifiers (''for all''), (''exists'') is equivalent to a similar formula without quantifiers. An important consequence is the decidability of the theory of real-closed fields. Although the original proof of the theorem was constructive, the resulting algorithm has a computational complexity that is too high for using the method on a co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Real Algebraic Geometry
In mathematics, real algebraic geometry is the sub-branch of algebraic geometry studying real algebraic sets, i.e. real-number solutions to algebraic equations with real-number coefficients, and mappings between them (in particular real polynomial mappings). Semialgebraic geometry is the study of semialgebraic sets, i.e. real-number solutions to algebraic inequalities with-real number coefficients, and mappings between them. The most natural mappings between semialgebraic sets are semialgebraic mappings, i.e., mappings whose graphs are semialgebraic sets. Terminology Nowadays the words 'semialgebraic geometry' and 'real algebraic geometry' are used as synonyms, because real algebraic sets cannot be studied seriously without the use of semialgebraic sets. For example, a projection of a real algebraic set along a coordinate axis need not be a real algebraic set, but it is always a semialgebraic set: this is the Tarski–Seidenberg theorem. Related fields are o-minimal theory ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computer Algebra
In mathematics and computer science, computer algebra, also called symbolic computation or algebraic computation, is a scientific area that refers to the study and development of algorithms and software for manipulating expression (mathematics), mathematical expressions and other mathematical objects. Although computer algebra could be considered a subfield of scientific computing, they are generally considered as distinct fields because scientific computing is usually based on numerical computation with approximate floating point numbers, while symbolic computation emphasizes ''exact'' computation with expressions containing variable (mathematics), variables that have no given value and are manipulated as symbols. Software applications that perform symbolic calculations are called ''computer algebra systems'', with the term ''system'' alluding to the complexity of the main applications that include, at least, a method to represent mathematical data in a computer, a user programm ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Joos Ulrich Heintz
Joos Ulrich Heintz (27 October 1945 - 3 October 2024) was an Argentinean-Swiss mathematician. He was a professor emeritus at the University of Buenos Aires. Biography Heintz was born on 27 October 1945 in Zürich, Switzerland. After studying Mathematics and Cultural Anthropology at the University of Zurich to undergraduate level, he went on to receive a PhD in mathematics in 1982 under the supervision of Volker Strassen. He performed his habilitation in 1986 at the J.W.von Goethe University in Frankfurt am Main where he also studied Turcology and Sephardic history and culture. He was appointed Privatdozent at the J.W. Goethe university Frankfurt am Main. Until his retirement in 2017, he worked as a Full Professor at the University of Buenos Aires and University of Cantabria/Spain and as a Senior Researcher at the National Council for Scientific and Technological Development (CONICET). Research Heintz worked mainly in algebraic complexity theory, computational algebraic geo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
MathWorld
''MathWorld'' is an online mathematics reference work, created and largely written by Eric W. Weisstein. It is sponsored by and licensed to Wolfram Research, Inc. and was partially funded by the National Science Foundation's National Science Digital Library grant to the University of Illinois at Urbana–Champaign. History Eric W. Weisstein, the creator of the site, was a physics and astronomy student who got into the habit of writing notes on his mathematical readings. In 1995 he put his notes online and called it "Eric's Treasure Trove of Mathematics." It contained hundreds of pages/articles, covering a wide range of mathematical topics. The site became popular as an extensive single resource on mathematics on the web. In 1998, he made a contract with CRC Press and the contents of the site were published in print and CD-ROM form, titled ''CRC Concise Encyclopedia of Mathematics''. The free online version became only partially accessible to the public. In 1999 Weisstein we ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Maple (software)
Maple is a symbolic and numeric computing environment as well as a multi-paradigm programming language. It covers several areas of technical computing, such as symbolic mathematics, numerical analysis, data processing, visualization, and others. A toolbox, MapleSim, adds functionality for multidomain physical modeling and code generation. Maple's capacity for symbolic computing include those of a general-purpose computer algebra system. For instance, it can manipulate mathematical expressions and find symbolic solutions to certain problems, such as those arising from ordinary and partial differential equations. Maple is developed commercially by the Canadian software company Maplesoft. The name 'Maple' is a reference to the software's Canadian heritage. Overview Core functionality Users can enter mathematics in traditional mathematical notation. Custom user interfaces can also be created. There is support for numeric computations, to arbitrary precision, as well as symbo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematica
Wolfram (previously known as Mathematica and Wolfram Mathematica) is a software system with built-in libraries for several areas of technical computing that allows machine learning, statistics, symbolic computation, data manipulation, network analysis, time series analysis, NLP, optimization, plotting functions and various types of data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other programming languages. It was conceived by Stephen Wolfram, and is developed by Wolfram Research of Champaign, Illinois. The Wolfram Language is the programming language used in ''Mathematica''. Mathematica 1.0 was released on June 23, 1988 in Champaign, Illinois and Santa Clara, California. Mathematica's Wolfram Language is fundamentally based on Lisp; for example, the Mathematica command Most is identically equal to the Lisp command butlast. There is a substantial literature on the development of computer algebra systems (CAS). __TOC_ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantifier Elimination
Quantifier elimination is a concept of simplification used in mathematical logic, model theory, and theoretical computer science. Informally, a quantified statement "\exists x such that ..." can be viewed as a question "When is there an x such that ...?", and the statement without quantifiers can be viewed as the answer to that question. One way of classifying formulas is by the amount of quantification. Formulas with less depth of quantifier alternation are thought of as being simpler, with the quantifier-free formulas as the simplest. A theory has quantifier elimination if for every formula \alpha, there exists another formula \alpha_ without quantifiers that is equivalent to it (modulo this theory). Examples An example from mathematics says that a single-variable quadratic polynomial has a real root if and only if its discriminant is non-negative: \exists x\in\mathbb. (a\neq 0 \wedge ax^2+bx+c=0)\ \ \Longleftrightarrow\ \ a\neq 0 \wedge b^2-4ac\geq 0 Here the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of Rigour#Mathematics, mathematically rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can use Conditional (computer programming), conditionals to divert the code execution through various routes (referred to as automated decision-making) and deduce valid inferences (referred to as automated reasoning). In contrast, a Heuristic (computer science), heuristic is an approach to solving problems without well-defined correct or optimal results.David A. Grossman, Ophir Frieder, ''Information Retrieval: Algorithms and Heuristics'', 2nd edition, 2004, For example, although social media recommender systems are commonly called "algorithms", they actually rely on heuristics as there is no truly "correct" recommendation. As an e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Double Exponential Function
A double exponential function is a constant raised to the power of an exponential function. The general formula is f(x) = a^=a^ (where ''a''>1 and ''b''>1), which grows much more quickly than an exponential function. For example, if ''a'' = ''b'' = 10: *''f''(x) = 1010x *''f''(0) = 10 *''f''(1) = 1010 *''f''(2) = 10100 = googol *''f''(3) = 101000 *''f''(100) = 1010100 = googolplex. Factorials grow faster than exponential functions, but much more slowly than double exponential functions. However, tetration and the Ackermann function grow faster. See Big O notation for a comparison of the rate of growth of various functions. The inverse of the double exponential function is the double logarithm log(log(''x'')). The complex double exponential function is entire, because it is the composition of two entire functions f(x)=a^x=e^ and g(x)=b^x=e^. Double exponential sequences A sequence of positive integers (or real numbers) is said to have ''double exponential rate of growth ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Analysis Of Algorithms
In computer science, the analysis of algorithms is the process of finding the computational complexity of algorithms—the amount of time, storage, or other resources needed to execute them. Usually, this involves determining a function that relates the size of an algorithm's input to the number of steps it takes (its time complexity) or the number of storage locations it uses (its space complexity). An algorithm is said to be efficient when this function's values are small, or grow slowly compared to a growth in the size of the input. Different inputs of the same size may cause the algorithm to have different behavior, so best, worst and average case descriptions might all be of practical interest. When not otherwise specified, the function describing the performance of an algorithm is usually an upper bound, determined from the worst case inputs to the algorithm. The term "analysis of algorithms" was coined by Donald Knuth. Algorithm analysis is an important part of a broa ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |