HOME
*



picture info

Cyclomatic Complexity
Cyclomatic complexity is a software metric used to indicate the complexity of a program. It is a quantitative measure of the number of linearly independent paths through a program's source code. It was developed by Thomas J. McCabe, Sr. in 1976. Cyclomatic complexity is computed using the control-flow graph of the program: the nodes of the graph correspond to indivisible groups of commands of a program, and a directed edge connects two nodes if the second command might be executed immediately after the first command. Cyclomatic complexity may also be applied to individual functions, modules, methods or classes within a program. One testing strategy, called basis path testing by McCabe who first proposed it, is to test each linearly independent path through the program; in this case, the number of test cases will equal the cyclomatic complexity of the program. Description Definition The cyclomatic complexity of a section of source code is the number of linearly independen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Software Metric
In software engineering and development, a software metric is a standard of measure of a degree to which a software system or process possesses some property. Even if a metric is not a measurement (metrics are functions, while measurements are the numbers obtained by the application of metrics), often the two terms are used as synonyms. Since quantitative measurements are essential in all sciences, there is a continuous effort by computer science practitioners and theoreticians to bring similar approaches to software development. The goal is obtaining objective, reproducible and quantifiable measurements, which may have numerous valuable applications in schedule and budget planning, cost estimation, quality assurance, testing, software debugging, software performance optimization, and optimal personnel task assignments. Common software measurements Common software measurements include: * ABC Software Metric * Balanced scorecard * Bugs per line of code * Code coverage * Cohe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Control Flow
In computer science, control flow (or flow of control) is the order in which individual statements, instructions or function calls of an imperative program are executed or evaluated. The emphasis on explicit control flow distinguishes an ''imperative programming'' language from a '' declarative programming'' language. Within an imperative programming language, a ''control flow statement'' is a statement that results in a choice being made as to which of two or more paths to follow. For non-strict functional languages, functions and language constructs exist to achieve the same result, but they are usually not termed control flow statements. A set of statements is in turn generally structured as a block, which in addition to grouping, also defines a lexical scope. Interrupts and signals are low-level mechanisms that can alter the flow of control in a way similar to a subroutine, but usually occur as a response to some external stimulus or event (that can occur asynchronously), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


GF(2)
(also denoted \mathbb F_2, or \mathbb Z/2\mathbb Z) is the finite field of two elements (GF is the initialism of ''Galois field'', another name for finite fields). Notations and \mathbb Z_2 may be encountered although they can be confused with the notation of -adic integers. is the field with the smallest possible number of elements, and is unique if the additive identity and the multiplicative identity are denoted respectively and , as usual. The elements of may be identified with the two possible values of a bit and to the boolean values ''true'' and ''false''. It follows that is fundamental and ubiquitous in computer science and its logical foundations. Definition GF(2) is the unique field with two elements with its additive and multiplicative identities respectively denoted and . Its addition is defined as the usual addition of integers but modulo 2 and corresponds to the table below: If the elements of GF(2) are seen as boolean values, then the addition is th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertex (graph Theory)
In discrete mathematics, and more specifically in graph theory, a vertex (plural vertices) or node is the fundamental unit of which graphs are formed: an undirected graph consists of a set of vertices and a set of edges (unordered pairs of vertices), while a directed graph consists of a set of vertices and a set of arcs (ordered pairs of vertices). In a diagram of a graph, a vertex is usually represented by a circle with a label, and an edge is represented by a line or arrow extending from one vertex to another. From the point of view of graph theory, vertices are treated as featureless and indivisible objects, although they may have additional structure depending on the application from which the graph arises; for instance, a semantic network is a graph in which the vertices represent concepts or classes of objects. The two vertices forming an edge are said to be the endpoints of this edge, and the edge is said to be incident to the vertices. A vertex ''w'' is said to be ad ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eulerian Path
In graph theory, an Eulerian trail (or Eulerian path) is a trail in a finite graph that visits every edge exactly once (allowing for revisiting vertices). Similarly, an Eulerian circuit or Eulerian cycle is an Eulerian trail that starts and ends on the same vertex. They were first discussed by Leonhard Euler while solving the famous Seven Bridges of Königsberg problem in 1736. The problem can be stated mathematically like this: :Given the graph in the image, is it possible to construct a path (or a cycle; i.e., a path starting and ending on the same vertex) that visits each edge exactly once? Euler proved that a necessary condition for the existence of Eulerian circuits is that all vertices in the graph have an even degree, and stated without proof that connected graphs with all vertices of even degree have an Eulerian circuit. The first complete proof of this latter claim was published posthumously in 1873 by Carl Hierholzer. This is known as Euler's Theorem: :A connected gra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linearly Independent Cycle
In graph theory, a branch of mathematics, a cycle basis of an undirected graph is a set of simple cycles that forms a basis of the cycle space of the graph. That is, it is a minimal set of cycles that allows every even-degree subgraph to be expressed as a symmetric difference of basis cycles. A fundamental cycle basis may be formed from any spanning tree or spanning forest of the given graph, by selecting the cycles formed by the combination of a path in the tree and a single edge outside the tree. Alternatively, if the edges of the graph have positive weights, the minimum weight cycle basis may be constructed in polynomial time. In planar graphs, the set of bounded cycles of an embedding of the graph forms a cycle basis. The minimum weight cycle basis of a planar graph corresponds to the Gomory–Hu tree of the dual graph. Definitions A spanning subgraph of a given graph ''G'' has the same set of vertices as ''G'' itself but, possibly, fewer edges. A graph ''G'', or one of it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

The First Betti Number In Graph Theory
''The'' () is a grammatical article in English, denoting persons or things that are already or about to be mentioned, under discussion, implied or otherwise presumed familiar to listeners, readers, or speakers. It is the definite article in English. ''The'' is the most frequently used word in the English language; studies and analyses of texts have found it to account for seven percent of all printed English-language words. It is derived from gendered articles in Old English which combined in Middle English and now has a single form used with nouns of any gender. The word can be used with both singular and plural nouns, and with a noun that starts with any letter. This is different from many other languages, which have different forms of the definite article for different genders or numbers. Pronunciation In most dialects, "the" is pronounced as (with the voiced dental fricative followed by a schwa) when followed by a consonant sound, and as (homophone of the archai ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclomatic Number
In graph theory, a branch of mathematics, the circuit rank, cyclomatic number, cycle rank, or nullity of an undirected graph is the minimum number of edges that must be removed from the graph to break all its cycles, making it into a tree or forest. It is equal to the number of independent cycles in the graph (the size of a cycle basis). Unlike the corresponding feedback arc set problem for directed graphs, the circuit rank is easily computed using the formula :r = m - n + c, where is the number of edges in the given graph, is the number of vertices, and is the number of connected components. . It is also possible to construct a minimum-size set of edges that breaks all cycles efficiently, either using a greedy algorithm or by complementing a spanning forest. The circuit rank can be explained in terms of algebraic graph theory as the dimension of the cycle space of a graph, in terms of matroid theory as the corank of a graphic matroid, and in terms of topology as one of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Strongly Connected
In the mathematical theory of directed graphs, a graph is said to be strongly connected if every vertex is reachable from every other vertex. The strongly connected components of an arbitrary directed graph form a partition into subgraphs that are themselves strongly connected. It is possible to test the strong connectivity of a graph, or to find its strongly connected components, in linear time (that is, Θ(''V'' + ''E'')). Definitions A directed graph is called strongly connected if there is a path in each direction between each pair of vertices of the graph. That is, a path exists from the first vertex in the pair to the second, and another path exists from the second vertex to the first. In a directed graph ''G'' that may not itself be strongly connected, a pair of vertices ''u'' and ''v'' are said to be strongly connected to each other if there is a path in each direction between them. The binary relation of being strongly connected is an equivalence relation, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Control Flow Graph Of Function With Loop And An If Statement
Control may refer to: Basic meanings Economics and business * Control (management), an element of management * Control, an element of management accounting * Comptroller (or controller), a senior financial officer in an organization * Controlling interest, a percentage of voting stock shares sufficient to prevent opposition * Foreign exchange controls, regulations on trade * Internal control, a process to help achieve specific goals typically related to managing risk Mathematics and science * Control (optimal control theory), a variable for steering a controllable system of state variables toward a desired goal * Controlling for a variable in statistics * Scientific control, an experiment in which "confounding variables" are minimised to reduce error * Control variables, variables which are kept constant during an experiment * Biological pest control, a natural method of controlling pests * Control network in geodesy and surveying, a set of reference points of known geospatial coo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Connected Component (graph Theory)
In graph theory, a component of an undirected graph is a connected subgraph that is not part of any larger connected subgraph. The components of any graph partition its vertices into disjoint sets, and are the induced subgraphs of those sets. A graph that is itself connected has exactly one component, consisting of the whole graph. Components are sometimes called connected components. The number of components in a given graph is an important graph invariant, and is closely related to invariants of matroids, topological spaces, and matrices. In random graphs, a frequently occurring phenomenon is the incidence of a giant component, one component that is significantly larger than the others; and of a percolation threshold, an edge probability above which a giant component exists and below which it does not. The components of a graph can be constructed in linear time, and a special case of the problem, connected-component labeling, is a basic technique in image analysis. Dynamic co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Basic Block
In compiler construction, a basic block is a straight-line code sequence with no branches in except to the entry and no branches out except at the exit. This restricted form makes a basic block highly amenable to analysis. Compilers usually decompose programs into their basic blocks as a first step in the analysis process. Basic blocks form the vertices or nodes in a control-flow graph. Definition The code in a basic block has: * One entry point, meaning that no code within it is the destination of a jump instruction anywhere in the program. * One exit point, meaning that only the last instruction can cause the program to begin executing code in a different basic block. Under these circumstances, whenever the first instruction in a basic block is executed, the rest of the instructions are necessarily executed exactly once and in order. The code may be source code, assembly code, or some other sequence of instructions. More formally, a sequence of instructions forms a basic block ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]