Strongly Connected
In the mathematical theory of directed graphs, a graph is said to be strongly connected if every vertex is reachable from every other vertex. The strongly connected components of a directed graph form a partition into subgraphs that are themselves strongly connected. It is possible to test the strong connectivity of a graph, or to find its strongly connected components, in linear time (that is, Θ(''V'' + ''E'')). Definitions A directed graph is called strongly connected if there is a path in each direction between each pair of vertices of the graph. That is, a path exists from the first vertex in the pair to the second, and another path exists from the second vertex to the first. In a directed graph ''G'' that may not itself be strongly connected, a pair of vertices ''u'' and ''v'' are said to be strongly connected to each other if there is a path in each direction between them. The binary relation of being strongly connected is an equivalence relation, and the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Directed Cycle
Direct may refer to: Mathematics * Directed set, in order theory * Direct limit of (pre), sheaves * Direct sum of modules, a construction in abstract algebra which combines several vector spaces Computing * Direct access (other), a method of accessing data in a database * Direct connect (other), various methods of telecommunications and computer networking * Direct memory access, access to memory by hardware subsystems independently of the CPU Entertainment * ''Direct'' (Tower of Power album) * ''Direct'' (Vangelis album) * ''Direct'' (EP), by The 77s Other uses * Direct (music symbol), a music symbol used in music notation that is similar to a catchword in literature * Nintendo Direct, an online presentation frequently held by Nintendo * Mars Direct, a proposal for a crewed mission to Mars * DIRECT, a proposed space shuttle-derived launch vehicle * DirectX, a proprietary dynamic media platform * Direct current, a direct flow of electricity * Dire ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Robert Tarjan
Robert Endre Tarjan (born April 30, 1948) is an American computer scientist and mathematician. He is the discoverer of several graph theory algorithms, including his strongly connected components algorithm, and co-inventor of both splay trees and Fibonacci heaps. Tarjan is currently the James S. McDonnell Distinguished University Professor of Computer Science at Princeton University. Personal life and education He was born in Pomona, California. His father, George Tarjan (1912–1991), raised in Hungary, was a child psychiatrist, specializing in mental retardation, and ran a state hospital. Robert Tarjan's younger brother James became a chess grandmaster. As a child, Robert Tarjan read a lot of science fiction, and wanted to be an astronomer. He became interested in mathematics after reading Martin Gardner's mathematical games column in Scientific American. He became seriously interested in math in the eighth grade, thanks to a "very stimulating" teacher. While he was in hig ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tarjan's Strongly Connected Components Algorithm
Tarjan's strongly connected components algorithm is an algorithm in graph theory for finding the strongly connected components (SCCs) of a directed graph. It runs in linear time, matching the time bound for alternative methods including Kosaraju's algorithm and the path-based strong component algorithm. The algorithm is named for its inventor, Robert Tarjan. Overview The algorithm takes a directed graph as input, and produces a partition of the graph's vertices into the graph's strongly connected components. Each vertex of the graph appears in exactly one of the strongly connected components. Any vertex that is not on a directed cycle forms a strongly connected component all by itself: for example, a vertex whose in-degree or out-degree is 0, or any vertex of an acyclic graph. The basic idea of the algorithm is this: a depth-first search (DFS) begins from an arbitrary start node (and subsequent depth-first searches are conducted on any nodes that have not yet been found ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Micha Sharir
Micha Sharir (; born 8 June 1950 in Tel Aviv, Israel) is an Israeli mathematician and computer scientist. He is a professor at Tel Aviv University, notable for his contributions to computational geometry and combinatorial geometry, having authored hundreds of papers. Biography Sharir was born in Tel Aviv in 1950. As a secondary school student he won the first place in the youth mathematics olympics of the Weizmann Institute of Science and Grossman Award from the Technion. In 1970, he completed his undergraduate studies and then served in unit 8200 of the Israel Defense Forces, during his service he was involved in a research team which won the 1975 Israel Defense Prize. In 1976, Sharir completed his doctoral (Ph.D.) studies in pure mathematics under the supervision of Aldo Lazar in Tel Aviv University. Then he began his postdoctoral studies at the Courant Institute of New York University, where he worked with Jack Schwartz. In 1980, he joined the faculty of Tel Aviv Universit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Introduction To Algorithms
''Introduction to Algorithms'' is a book on computer programming by Thomas H. Cormen, Charles E. Leiserson, Ron Rivest, Ronald L. Rivest, and Clifford Stein. The book is described by its publisher as "the leading algorithms text in universities worldwide as well as the standard reference for professionals". It is commonly Citation, cited as a reference for algorithms in published Academic publishing#Scholarly paper, papers, with over 10,000 citations documented on CiteSeerX, and over 70,000 citations on Google Scholar as of 2024. The book sold half a million copies during its first 20 years, and surpassed a million copies sold in 2022. Its fame has led to the common use of the abbreviation "CLRS" (Cormen, Leiserson, Rivest, Stein), or, in the first edition, "CLR" (Cormen, Leiserson, Rivest). In the preface, the authors write about how the book was written to be comprehensive and useful in both teaching and professional environments. Each chapter focuses on an algorithm, and discus ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Clifford Stein
Clifford Seth Stein (born December 14, 1965), a computer scientist, is a professor of industrial engineering and operations research at Columbia University in New York, NY, where he also holds an appointment in the Department of Computer Science. Stein is chair of the Industrial Engineering and Operations Research Department at Columbia University. Prior to joining Columbia, Stein was a professor at Dartmouth College in New Hampshire. Stein's research interests include the design and analysis of algorithms, combinatorial optimization, operations research, network algorithms, scheduling, algorithm engineering and computational biology. Stein has published many influential papers in the leading conferences and journals in his fields of research, and has occupied a variety of editorial positions including in the journals ''ACM Transactions on Algorithms'', ''Mathematical Programming'', ''Journal of Algorithms'', '' SIAM Journal on Discrete Mathematics'' and ''Operations Research ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ronald L
Ronald is a masculine given name derived from the Old Norse ''Rögnvaldr'', Hanks; Hardcastle; Hodges (2006) p. 234; Hanks; Hodges (2003) § Ronald. or possibly from Old English '' Regenweald''. In some cases ''Ronald'' is an Anglicised form of the Gaelic '' Raghnall'', a name likewise derived from ''Rögnvaldr''. The latter name is composed of the Old Norse elements ''regin'' ("advice", "decision") and ''valdr'' ("ruler"). ''Ronald'' was originally used in England and Scotland, where Scandinavian influences were once substantial, although now the name is common throughout the English-speaking world. A short form of ''Ronald'' is ''Ron''. Pet forms of ''Ronald'' include ''Roni'' and '' Ronnie''. ''Ronalda'' and ''Rhonda'' are feminine forms of ''Ronald''. ''Rhona'', a modern name apparently only dating back to the late nineteenth century, may have originated as a feminine form of ''Ronald''. Hanks; Hardcastle; Hodges (2006) pp. 230, 408; Hanks; Hodges (2003) § Rhona. The names ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Charles E
Charles is a masculine given name predominantly found in English language, English and French language, French speaking countries. It is from the French form ''Charles'' of the Proto-Germanic, Proto-Germanic name (in runic alphabet) or ''*karilaz'' (in Latin alphabet), whose meaning was "free man". The Old English descendant of this word was ''Churl, Ċearl'' or ''Ċeorl'', as the name of King Cearl of Mercia, that disappeared after the Norman conquest of England. The name was notably borne by Charlemagne (Charles the Great), and was at the time Latinisation of names, Latinized as ''Karolus'' (as in ''Vita Karoli Magni''), later also as ''Carolus (other), Carolus''. Etymology The name's etymology is a Common Germanic noun ''*karilaz'' meaning "free man", which survives in English as wikt:churl, churl (< Old English ''ċeorl''), which developed its deprecating sense in the Middle English period. Some Germanic languages, for example Dutch language, Dutch and German ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Thomas H
Thomas may refer to: People * List of people with given name Thomas * Thomas (name) * Thomas (surname) * Saint Thomas (other) * Thomas Aquinas (1225–1274) Italian Dominican friar, philosopher, and Doctor of the Church * Thomas the Apostle * Thomas (bishop of the East Angles) (fl. 640s–650s), medieval Bishop of the East Angles * Thomas (Archdeacon of Barnstaple) (fl. 1203), Archdeacon of Barnstaple * Thomas, Count of Perche (1195–1217), Count of Perche * Thomas (bishop of Finland) (1248), first known Bishop of Finland * Thomas, Earl of Mar (1330–1377), 14th-century Earl, Aberdeen, Scotland Geography Places in the United States * Thomas, Idaho * Thomas, Illinois * Thomas, Oklahoma * Thomas, Oregon * Thomas, South Dakota * Thomas, Virginia * Thomas, Washington * Thomas, West Virginia * Thomas County (other) * Thomas Township (other) Elsewhere * Thomas Glacier (Greenland) Arts and entertainment * ''Thomas'' (Burton novel), ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Transpose Graph
In the mathematical and algorithmic study of graph theory, the converse, transpose or reverse, entry 2.24 of a directed graph is another directed graph on the same set of Vertex (graph theory), vertices with all of the edges reversed compared to the orientation of the corresponding edges in . That is, if contains an edge then the converse/transpose/reverse of contains an edge and vice versa. Notation The name arises because the reversal of arrows corresponds to taking the Converse (logic), converse of an implication in logic. The name is because the adjacency matrix of the transpose directed graph is the transpose of the adjacency matrix of the original directed graph. There is no general agreement on preferred terminology. The converse is denoted symbolically as , , , or other notations, depending on which terminology is used and which book or article is the source for the notation. Applications Although there is little difference mathematically between a graph and ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Recursion
Recursion occurs when the definition of a concept or process depends on a simpler or previous version of itself. Recursion is used in a variety of disciplines ranging from linguistics to logic. The most common application of recursion is in mathematics and computer science, where a function (mathematics), function being defined is applied within its own definition. While this apparently defines an infinite number of instances (function values), it is often done in such a way that no infinite loop or infinite chain of references can occur. A process that exhibits recursion is ''recursive''. Video feedback displays recursive images, as does an infinity mirror. Formal definitions In mathematics and computer science, a class of objects or methods exhibits recursive behavior when it can be defined by two properties: * A simple ''base case'' (or cases) — a terminating scenario that does not use recursion to produce an answer * A ''recursive step'' — a set of rules that reduce ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |