Cubical Set
   HOME
*





Cubical Set
In topology, a branch of mathematics, a cubical set is a set-valued contravariant functor on the category of (various) ''n''-cubes. Cubical sets have been often considered as an alternative to simplicial sets in combinatorial topology, including in the early work of Daniel Kan and Jean-Pierre Serre. It has been also developed in computer science, in particular in concurrency theory and in homotopy type theory. See also *Simplicial presheaf References *http://ncatlab.org/nlab/show/cubical+set * Rick Jardine John Frederick "Rick" Jardine (born December 6, 1951 in Belleville, Canada) is a Canadian mathematician working in the fields of homotopy theory, category theory, and number theory. Biography Jardine obtained his Ph.D. from the University ...Cubical sets Lecture 12 in "Lectures on simplicial presheaves" https://web.archive.org/web/20110104053206/http://www.math.uwo.ca/~jardine/papers/sPre/index.shtml Topology {{topology-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topology
In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such as Stretch factor, stretching, Twist (mathematics), twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set (mathematics), set endowed with a structure, called a ''Topology (structure), topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity (mathematics), continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopy, homotopies. A property that is invariant under such deformations is a topological property. Basic exampl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Contravariant Functor
In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and maps between these algebraic objects are associated to continuous maps between spaces. Nowadays, functors are used throughout modern mathematics to relate various categories. Thus, functors are important in all areas within mathematics to which category theory is applied. The words ''category'' and ''functor'' were borrowed by mathematicians from the philosophers Aristotle and Rudolf Carnap, respectively. The latter used ''functor'' in a linguistic context; see function word. Definition Let ''C'' and ''D'' be categories. A functor ''F'' from ''C'' to ''D'' is a mapping that * associates each object X in ''C'' to an object F(X) in ''D'', * associates each morphism f \colon X \to Y in ''C'' to a morphism F(f) \colon F(X) \to F(Y) in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Category (mathematics)
In mathematics, a category (sometimes called an abstract category to distinguish it from a concrete category) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the category of sets, whose objects are sets and whose arrows are functions. '' Category theory'' is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent. Virtually every branch of modern mathematics can be described in terms of categories, and doing so often reveals deep insights and similarities between seemingly different areas of mathematics. As such, category theory provides an alternative foundation for mathematics to set theory and other proposed axiomatic foundations. In general, the objects and arrows may be abstract entities of any kind, and the n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Combinatorial Topology
In mathematics, combinatorial topology was an older name for algebraic topology, dating from the time when topological invariants of spaces (for example the Betti numbers) were regarded as derived from combinatorial decompositions of spaces, such as decomposition into simplicial complexes. After the proof of the simplicial approximation theorem this approach provided rigour. The change of name reflected the move to organise topological classes such as cycles-modulo-boundaries explicitly into abelian groups. This point of view is often attributed to Emmy Noether, and so the change of title may reflect her influence. The transition is also attributed to the work of Heinz Hopf, who was influenced by Noether, and to Leopold Vietoris and Walther Mayer, who independently defined homology. A fairly precise date can be supplied in the internal notes of the Bourbaki group. While topology was still ''combinatorial'' in 1942, it had become ''algebraic'' by 1944. This corresponds also to the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Daniel Kan
Daniel Marinus Kan (or simply Dan Kan) (August 4, 1927 – August 4, 2013) was a Dutch mathematician working in category theory and homotopy theory. He was a prolific contributor to both fields for six decades, having authored or coauthored several dozen research papers and monographs. Career He received his Ph.D. at Hebrew University in 1955, under the direction of Samuel Eilenberg. His students include Aldridge K. Bousfield, William Dwyer, Stewart Priddy, Emmanuel Dror Farjoun and Jeffrey H. Smith. He was an emeritus professor at the Massachusetts Institute of Technology where he taught from 1959, formally retiring in 1993. Work He played a role in the beginnings of modern homotopy theory similar to that of Saunders Mac Lane in homological algebra, namely the adroit and persistent application of categorical methods. His most famous work is the abstract formulation of the discovery of adjoint functors, which dates from 1958. The Kan extension is one of the broadest descript ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Jean-Pierre Serre
Jean-Pierre Serre (; born 15 September 1926) is a French mathematician who has made contributions to algebraic topology, algebraic geometry, and algebraic number theory. He was awarded the Fields Medal in 1954, the Wolf Prize in 2000 and the inaugural Abel Prize in 2003. Biography Personal life Born in Bages, Pyrénées-Orientales, France, to pharmacist parents, Serre was educated at the Lycée de Nîmes and then from 1945 to 1948 at the École Normale Supérieure in Paris. He was awarded his doctorate from the Sorbonne in 1951. From 1948 to 1954 he held positions at the Centre National de la Recherche Scientifique in Paris. In 1956 he was elected professor at the Collège de France, a position he held until his retirement in 1994. His wife, Professor Josiane Heulot-Serre, was a chemist; she also was the director of the Ecole Normale Supérieure de Jeunes Filles. Their daughter is the former French diplomat, historian and writer Claudine Monteil. The French mathematician Denis S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Concurrency (computer Science)
In computer science, concurrency is the ability of different parts or units of a program, algorithm, or problem to be executed out-of-order or in partial order, without affecting the outcome. This allows for parallel execution of the concurrent units, which can significantly improve overall speed of the execution in multi-processor and multi-core systems. In more technical terms, concurrency refers to the decomposability of a program, algorithm, or problem into order-independent or partially-ordered components or units of computation. According to Rob Pike, concurrency is the composition of independently executing computations, and concurrency is not parallelism: concurrency is about dealing with lots of things at once but parallelism is about doing lots of things at once. Concurrency is about structure, parallelism is about execution, concurrency provides a way to structure a solution to solve a problem that may (but not necessarily) be parallelizable. A number of mathema ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homotopy Type Theory
In mathematical logic and computer science, homotopy type theory (HoTT ) refers to various lines of development of intuitionistic type theory, based on the interpretation of types as objects to which the intuition of (abstract) homotopy theory applies. This includes, among other lines of work, the construction of homotopical and higher-categorical models for such type theories; the use of type theory as a logic (or internal language) for abstract homotopy theory and higher category theory; the development of mathematics within a type-theoretic foundation (including both previously existing mathematics and new mathematics that homotopical types make possible); and the formalization of each of these in computer proof assistants. There is a large overlap between the work referred to as homotopy type theory, and as the univalent foundations project. Although neither is precisely delineated, and the terms are sometimes used interchangeably, the choice of usage also sometimes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simplicial Presheaf
In mathematics, more specifically in homotopy theory, a simplicial presheaf is a presheaf on a site (e.g., the category of topological spaces) taking values in simplicial sets (i.e., a contravariant functor from the site to the category of simplicial sets). Equivalently, a simplicial presheaf is a simplicial object in the category of presheaves on a site. The notion was introduced by A. Joyal in the 1970s. Similarly, a simplicial sheaf on a site is a simplicial object in the category of sheaves on the site. Example: Consider the étale site of a scheme ''S''. Each ''U'' in the site represents the presheaf \operatorname(-, U). Thus, a simplicial scheme, a simplicial object in the site, represents a simplicial presheaf (in fact, often a simplicial sheaf). Example: Let ''G'' be a presheaf of groupoids. Then taking nerves section-wise, one obtains a simplicial presheaf BG. For example, one might set B\operatorname = \varinjlim B\operatorname. These types of examples appear in K-theory ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Rick Jardine
John Frederick "Rick" Jardine (born December 6, 1951 in Belleville, Canada) is a Canadian mathematician working in the fields of homotopy theory, category theory, and number theory. Biography Jardine obtained his Ph.D. from the University of British Columbia in 1981, with thesis ''Algebraic Homotopy'' written under the direction of Roy Douglas. Following a research fellowship at the University of Toronto and a Dickson instructorship at the University of Chicago, he joined the Department of Mathematics at the University of Western Ontario in 1984, where he is currently an emeritus professor. From 2002 to 2016, Jardine held a Canada Research Chair in applied homotopy theory. Since 2008, he is fellow of the Fields Institute, and has been recognized with the Coxeter–James Prize in 1992 by the Canadian Mathematical Society. In 2018 the Canadian Mathematical Society listed him in their inaugural class of fellows. Work Jardine is known for his work on model category In mathemati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]