Cotton–Mouton Effect
In physical optics, the Cotton–Mouton effect is the birefringence in a liquid in the presence of a constant transverse magnetic field. It is a similar but stronger effect than the Voigt effect (in which the medium is a gas instead of a liquid). The electric analog is the Kerr effect. It was discovered in 1905 by Aimé Cotton and Henri Mouton, working in collaboration and publishing in . When a linearly polarized wave propagates perpendicularly to a magnetic field (e.g. in a magnetized plasma), it can become elliptized. Because a linearly polarized wave is some combination of in-phase X and O modes, and because X and O waves propagate with different phase velocities, there is elliptization of the emerging beam. As the waves propagate, the phase difference (δ) between EX and EO increases. See also * Cotton effect The Cotton effect in physics, is the characteristic change in optical rotatory dispersion and/or circular dichroism in the vicinity of an absorption band of a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Physical Optics
In physics, physical optics, or wave optics, is the branch of optics that studies interference, diffraction, polarization, and other phenomena for which the ray approximation of geometric optics is not valid. This usage tends not to include effects such as quantum noise in optical communication, which is studied in the sub-branch of coherence theory. Principle ''Physical optics'' is also the name of an approximation commonly used in optics, electrical engineering and applied physics. In this context, it is an intermediate method between geometric optics, which ignores wave effects, and full wave electromagnetism, which is a precise theory. The word "physical" means that it is more physical than geometric or ray optics and not that it is an exact physical theory. This approximation consists of using ray optics to estimate the field on a surface and then integrating that field over the surface to calculate the transmitted or scattered field. This resembles the Born approxima ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Birefringence
Birefringence is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. These optically anisotropic materials are said to be birefringent (or birefractive). The birefringence is often quantified as the maximum difference between refractive indices exhibited by the material. Crystals with non-cubic crystal structures are often birefringent, as are plastics under mechanical stress. Birefringence is responsible for the phenomenon of double refraction whereby a ray of light, when incident upon a birefringent material, is split by polarization into two rays taking slightly different paths. This effect was first described by Danish scientist Rasmus Bartholin in 1669, who observed it in calcite, a crystal having one of the strongest birefringences. In the 19th century Augustin-Jean Fresnel described the phenomenon in terms of polarization, understanding light as a wave with field components in transverse polariz ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Magnetic Field
A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to the magnetic field. A permanent magnet's magnetic field pulls on ferromagnetic materials such as iron, and attracts or repels other magnets. In addition, a nonuniform magnetic field exerts minuscule forces on "nonmagnetic" materials by three other magnetic effects: paramagnetism, diamagnetism, and antiferromagnetism, although these forces are usually so small they can only be detected by laboratory equipment. Magnetic fields surround magnetized materials, and are created by electric currents such as those used in electromagnets, and by electric fields varying in time. Since both strength and direction of a magnetic field may vary with location, it is described mathematically by a function assigning a vector to each point of space, cal ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kerr Effect
The Kerr effect, also called the quadratic electro-optic (QEO) effect, is a change in the refractive index of a material in response to an applied electric field. The Kerr effect is distinct from the Pockels effect in that the induced index change is directly proportional to the ''square'' of the electric field instead of varying linearly with it. All materials show a Kerr effect, but certain liquids display it more strongly than others. The Kerr effect was discovered in 1875 by Scottish physicist John Kerr. Two special cases of the Kerr effect are normally considered, these being the Kerr electro-optic effect, or DC Kerr effect, and the optical Kerr effect, or AC Kerr effect. Kerr electro-optic effect The Kerr electro-optic effect, or DC Kerr effect, is the special case in which a slowly varying external electric field is applied by, for instance, a voltage on electrodes across the sample material. Under this influence, the sample becomes birefringent, with different indices ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Aimé Cotton
Aimé Auguste Cotton (9 October 1869 – 16 April 1951) was a French physicist known for his studies of the interaction of light with chiral molecules. In the absorption bands of these molecules, he discovered large values of optical rotatory dispersion (ORD), or variation of optical rotation as a function of wavelength ( Cotton effect), as well as circular dichroism or differences of absorption between left and right circularly polarized light. Biography Aimé Cotton was born in Bourg-en-Bresse, Ain on 9 October 1869. His grandfather was director of the École normale (teachers' college) of Bourg, and his father, Eugène Cotton, was a mathematics professor at the college of Bourg, the institution where physicist André-Marie Ampère began his career. Aimé's brother Émile Cotton was a mathematician and academician. Aimé Cotton attended a lycée (high school) in Bourg and then the special mathematics program at the Lycée Blaise Pascal in Clermont-Ferrand. He entered ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Henri Mouton
Henri Mouton September 1869, Cambrai (Nord) – 13 June 1935, Bezons (Val d'Oise)) was a French scientist. He entered the École normale supérieure in 1889. He was a biologist at the Institut Pasteur, then maître de conférences at the Faculté des sciences in Paris from 1917, and finally professor of physical chemistry from 1927. He is best known for his discovery in 1907 of the Cotton–Mouton effect in collaboration with Aimé Cotton Aimé Auguste Cotton (9 October 1869 – 16 April 1951) was a French physicist known for his studies of the interaction of light with chiral molecules. In the absorption bands of these molecules, he discovered large values of optical rotator .... References 1869 births 1935 deaths French physical chemists French biologists {{France-scientist-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cotton Effect
The Cotton effect in physics, is the characteristic change in optical rotatory dispersion and/or circular dichroism in the vicinity of an absorption band of a substance. In a wavelength region where the light is absorbed, the absolute magnitude of the optical rotation at first varies rapidly with wavelength, crosses zero at absorption maxima and then again varies rapidly with wavelength but in the opposite direction. This phenomenon was discovered in 1895 by the French physicist Aimé Cotton Aimé Auguste Cotton (9 October 1869 – 16 April 1951) was a French physicist known for his studies of the interaction of light with chiral molecules. In the absorption bands of these molecules, he discovered large values of optical rotator ... (1869–1951). The Cotton effect is called ''positive'' if the optical rotation first increases as the wavelength decreases (as first observed by Cotton), and ''negative'' if the rotation first decreases. A protein structure such as a bet ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Magneto-optic Effects
A magneto-optic effect is any one of a number of phenomena in which an electromagnetic wave propagates through a medium that has been altered by the presence of a quasistatic magnetic field. In such a medium, which is also called gyrotropic or gyromagnetic, left- and right-rotating elliptical polarizations can propagate at different speeds, leading to a number of important phenomena. When light is transmitted through a layer of magneto-optic material, the result is called the Faraday effect: the plane of Polarization (waves), polarization can be rotated, forming a Faraday rotator. The results of reflection from a magneto-optic material are known as the magneto-optic Kerr effect (not to be confused with the nonlinear optics, nonlinear Kerr effect). In general, magneto-optic effects break time reversal symmetry locally (i.e. when only the propagation of light, and not the source of the magnetic field, is considered) as well as Lorentz reciprocity, which is a necessary condition ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |