A magneto-optic effect is any one of a number of phenomena in which an
electromagnetic wave
In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visib ...
propagates through a medium that has been altered by the presence of a quasistatic
magnetic field
A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
. In such a medium, which is also called gyrotropic or gyromagnetic, left- and right-rotating elliptical polarizations can propagate at different speeds, leading to a number of important phenomena. When light is transmitted through a layer of magneto-optic material, the result is called the
Faraday effect
The Faraday effect or Faraday rotation, sometimes referred to as the magneto-optic Faraday effect (MOFE), is a physical magneto-optical phenomenon. The Faraday effect causes a polarization rotation which is proportional to the projection of the m ...
: the plane of
polarization can be rotated, forming a
Faraday rotator
A Faraday rotator is a polarization rotator based on the Faraday effect, a magneto-optic effect involving transmission of light through a material when a longitudinal static magnetic field is present. The state of polarization (such as the axis of ...
. The results of reflection from a magneto-optic material are known as the
magneto-optic Kerr effect In physics the magneto-optic Kerr effect (MOKE) or the surface magneto-optic Kerr effect (SMOKE) is one of the magneto-optic effects. It describes the changes to light reflected from a magnetized surface. It is used in materials science research ...
(not to be confused with the
nonlinear
In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other ...
Kerr effect
The Kerr effect, also called the quadratic electro-optic (QEO) effect, is a change in the refractive index of a material in response to an applied electric field. The Kerr effect is distinct from the Pockels effect in that the induced index chang ...
).
In general, magneto-optic effects break
time reversal symmetry
T-symmetry or time reversal symmetry is the theoretical symmetry of physical laws under the transformation of time reversal,
: T: t \mapsto -t.
Since the second law of thermodynamics states that entropy increases as time flows toward the future ...
locally (i.e. when only the propagation of light, and not the source of the magnetic field, is considered) as well as
Lorentz reciprocity
In classical electromagnetism, reciprocity refers to a variety of related theorems involving the interchange of time- harmonic electric current densities (sources) and the resulting electromagnetic fields in Maxwell's equations for time-invarian ...
, which is a necessary condition to construct devices such as
optical isolator
An optical isolator, or optical diode, is an optical component which allows the transmission of light in only one direction. It is typically used to prevent unwanted feedback into an optical oscillator, such as a laser cavity.
The operation of ...
s (through which light passes in one direction but not the other).
Two gyrotropic materials with reversed rotation directions of the two principal polarizations, corresponding to complex-conjugate ε tensors for lossless media, are called
optical isomer
In chemistry, a molecule or ion is called chiral () if it cannot be superposed on its mirror image by any combination of rotations, translations, and some conformational changes. This geometric property is called chirality (). The terms are d ...
s.
Gyrotropic permittivity
In particular, in a magneto-optic material the presence of a magnetic field (either externally applied or because the material itself is
ferromagnetic
Ferromagnetism is a property of certain materials (such as iron) which results in a large observed magnetic permeability, and in many cases a large magnetic coercivity allowing the material to form a permanent magnet. Ferromagnetic materials ...
) can cause a change in the
permittivity
In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ''ε'' ( epsilon), is a measure of the electric polarizability of a dielectric. A material with high permittivity polarizes more in ...
tensor ε of the material. The ε becomes anisotropic, a 3×3 matrix, with
complex
Complex commonly refers to:
* Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe
** Complex system, a system composed of many components which may interact with each ...
off-diagonal components, depending of course on the frequency ω of incident light. If the absorption losses can be neglected, ε is a
Hermitian matrix
In mathematics, a Hermitian matrix (or self-adjoint matrix) is a complex square matrix that is equal to its own conjugate transpose—that is, the element in the -th row and -th column is equal to the complex conjugate of the element in the -th ...
. The resulting
principal axes become complex as well, corresponding to elliptically-polarized light where left- and right-rotating polarizations can travel at different speeds (analogous to
birefringence
Birefringence is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light. These optically anisotropic materials are said to be birefringent (or birefractive). The birefring ...
).
More specifically, for the case where absorption losses can be neglected, the most general form of Hermitian ε is:
:
or equivalently the relationship between the
displacement field D and the
electric field
An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field fo ...
E is:
:
where
is a real
symmetric matrix
In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally,
Because equal matrices have equal dimensions, only square matrices can be symmetric.
The entries of a symmetric matrix are symmetric with re ...
and
is a real
pseudovector
In physics and mathematics, a pseudovector (or axial vector) is a quantity that is defined as a function of some vectors or other geometric shapes, that resembles a vector, and behaves like a vector in many situations, but is changed into its o ...
called the gyration vector, whose magnitude is generally small compared to the eigenvalues of
. The direction of g is called the axis of gyration of the material. To first order, g is proportional to the applied
magnetic field
A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
:
:
where
is the
magneto-optical susceptibility
A magneto-optical drive is a kind of optical disc drive capable of writing and rewriting data upon a magneto-optical disc. Both 130 mm (5.25 in) and 90 mm (3.5 in) form factors exist. In 1983, just a year after the introduc ...
(a
scalar
Scalar may refer to:
*Scalar (mathematics), an element of a field, which is used to define a vector space, usually the field of real numbers
* Scalar (physics), a physical quantity that can be described by a single element of a number field such ...
in isotropic media, but more generally a
tensor
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tenso ...
). If this susceptibility itself depends upon the electric field, one can obtain a
nonlinear optical
Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in ''nonlinear media'', that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity is typic ...
effect of
magneto-optical parametric generation
A magneto-optical drive is a kind of optical disc drive capable of writing and rewriting data upon a magneto-optical disc. Both 130 mm (5.25 in) and 90 mm (3.5 in) form factors exist. In 1983, just a year after the introduc ...
(somewhat analogous to a
Pockels effect
The Pockels effect or Pockels electro-optic effect, named after Friedrich Carl Alwin Pockels (who studied the effect in 1893), changes or produces birefringence in an optical medium induced by an electric field. In the Pockels effect, also known as ...
whose strength is controlled by the applied magnetic field).
The simplest case to analyze is the one in which g is a principal axis (eigenvector) of
, and the other two eigenvalues of
are identical. Then, if we let g lie in the ''z'' direction for simplicity, the ε tensor simplifies to the form:
:
Most commonly, one considers light propagating in the ''z'' direction (parallel to g). In this case the solutions are elliptically polarized electromagnetic waves with
phase velocities
The phase velocity of a wave is the rate at which the wave propagates in any medium. This is the velocity at which the phase of any one frequency component of the wave travels. For such a component, any given phase of the wave (for example, ...
(where μ is the
magnetic permeability
In electromagnetism, permeability is the measure of magnetization that a material obtains in response to an applied magnetic field. Permeability is typically represented by the (italicized) Greek letter ''μ''. The term was coined by William ...
). This difference in phase velocities leads to the Faraday effect.
For light propagating purely perpendicular to the axis of gyration, the properties are known as the
Cotton-Mouton effect and used for a
Circulator
A circulator is a passive, non-reciprocal three- or four-port device that only allows a microwave or radio-frequency signal to exit through the port directly after the one it entered. Optical circulators have similar behavior. Ports are where an ...
.
Kerr rotation and Kerr ellipticity
Kerr rotation and Kerr ellipticity are changes in the polarization of incident light which comes in contact with a gyromagnetic material. Kerr rotation is a rotation in the plane of polarization of transmitted light, and Kerr ellipticity is the ratio of the major to minor axis of the ellipse traced out by
elliptically polarized light on the plane through which it propagates. Changes in the orientation of polarized incident light can be quantified using these two properties.
According to classical physics, the speed of light varies with the permittivity of a material:
where
is the velocity of light through the material,
is the material permittivity, and
is the material permeability. Because the permittivity is anisotropic, polarized light of different orientations will travel at different speeds.
This can be better understood if we consider a wave of light that is circularly polarized (seen to the right). If this wave interacts with a material at which the horizontal component (green sinusoid) travels at a different speed than the vertical component (blue sinusoid), the two components will fall out of the 90 degree phase difference (required for circular polarization) changing the Kerr ellipticity.
A change in Kerr rotation is most easily recognized in linearly polarized light, which can be separated into two
circularly polarized
In electrodynamics, circular polarization of an electromagnetic wave is a polarization state in which, at each point, the electromagnetic field of the wave has a constant magnitude and is rotating at a constant rate in a plane perpendicular to t ...
components: Left-handed circular polarized (LHCP) light and right-handed circular polarized (RHCP) light. The anisotropy of the magneto-optic material permittivity causes a difference in the speed of LHCP and RHCP light, which will cause a change in the angle of polarized light. Materials that exhibit this property are known as
birefringent
Birefringence is the optics, optical property of a material having a refractive index that depends on the Polarization (waves), polarization and propagation direction of light. These optically anisotropic materials are said to be birefringent (or ...
.
From this rotation, we can calculate the difference in orthogonal velocity components, find the anisotropic permittivity, find the gyration vector, and calculate the applied magnetic field
.
See also
*
Zeeman effect
The Zeeman effect (; ) is the effect of splitting of a spectral line into several components in the presence of a static magnetic field. It is named after the Dutch physicist Pieter Zeeman, who discovered it in 1896 and received a Nobel prize ...
*
QMR effect
Quadratic magnetic rotation (also known as QMR or QMR effect) is a type of magneto-optic effect, discovered in the mid 1980s by a team of Ukrainian physicists. QMR, like the Faraday effect, establishes a relationship between the magnetic field and ...
*
Magneto-optic Kerr effect In physics the magneto-optic Kerr effect (MOKE) or the surface magneto-optic Kerr effect (SMOKE) is one of the magneto-optic effects. It describes the changes to light reflected from a magnetized surface. It is used in materials science research ...
*
Faraday effect
The Faraday effect or Faraday rotation, sometimes referred to as the magneto-optic Faraday effect (MOFE), is a physical magneto-optical phenomenon. The Faraday effect causes a polarization rotation which is proportional to the projection of the m ...
*
Voigt Effect
*
Photoelectric effect
The photoelectric effect is the emission of electrons when electromagnetic radiation, such as light, hits a material. Electrons emitted in this manner are called photoelectrons. The phenomenon is studied in condensed matter physics, and solid st ...
References
*
Federal Standard 1037C
Federal Standard 1037C, titled Telecommunications: Glossary of Telecommunication Terms, is a United States Federal Standard issued by the General Services Administration pursuant to the Federal Property and Administrative Services Act of 1949, a ...
and from
MIL-STD-188
MIL-STD-188 is a series of U.S. military standards relating to telecommunications.
Purpose
Faced with "past technical deficiencies in telecommunications systems and equipment and software…that were traced to basic inadequacies in the applicat ...
*
*
*
*
*
Broad band magneto-optical spectroscopy
{{Authority control
Optical phenomena
Electric and magnetic fields in matter
de:Magnetooptik#Magnetooptische Effekte