HOME
        TheInfoList






Birefringence is the optical property of a material having a refractive index that depends on the polarization and propagation direction of light.[1] These optically anisotropic materials are said to be birefringent (or birefractive). The birefringence is often quantified as the maximum difference between refractive indices exhibited by the material. Crystals with non-cubic crystal structures are often birefringent, as are plastics under mechanical stress.

Birefringence is responsible for the phenomenon of double refraction whereby a ray of light, when incident upon a birefringent material, is split by polarization into two rays taking slightly different paths. This effect was first described by the Danish scientist Rasmus Bartholin in 1669, who observed it[2] in calcite, a crystal having one of the strongest birefringences. However, it was not until the 19th century that Augustin-Jean Fresnel described the phenomenon in terms of polarization, understanding light as a wave with field components in transverse polarization (perpendicular to the direction of the wave vector).

Explanation

Incoming light in the perpendicular (s) polarization sees a different effective index of refraction than light in the parallel (p) polarization, and is thus refracted at a different angle.
Incoming light in the parallel (p) polarization sees a different effective index of refraction than light in the perpendicular (s) polarization, and is thus refracted at a different angle.
Doubly refracted image as seen through a calcite crystal, seen through a rotating polarizing filter illustrating the opposite polarization states of the two images.

A mathematical description of wave propagation in a birefringent medium is presented below. Following is a qualitative explanation of the phenomenon.

Uniaxial materials

The simplest type of birefringence is described as uniaxial, meaning that there is a single direction governing the optical anisotropy whereas all directions perpendicular to it (or at a given angle to it) are optically equivalent. Thus rotating the material around this axis does not change its optical behaviour. This special direction is known as the optic axis of the material. Light propagating parallel to the optic axis (whose polarization is always perpendicular to the optic axis) is governed by a refractive index no (for "ordinary") regardless of its specific polarization. For rays with any other propagation direction, there is one li

Birefringence is responsible for the phenomenon of double refraction whereby a ray of light, when incident upon a birefringent material, is split by polarization into two rays taking slightly different paths. This effect was first described by the Danish scientist Rasmus Bartholin in 1669, who observed it[2] in calcite, a crystal having one of the strongest birefringences. However, it was not until the 19th century that Augustin-Jean Fresnel described the phenomenon in terms of polarization, understanding light as a wave with field components in transverse polarization (perpendicular to the direction of the wave vector).

A mathematical description of wave propagation in a birefringent medium is presented below. Following is a qualitative explanation of the phenomenon.

Uniaxial materials

The simplest type of birefringence is described as uniaxial, meaning that there is a single direction governing the optical anisotropy whereas all directions perpendicular to it (or at a given angle to it) are optically equivalent. Thus rotating the material around this axis does not change its optical behaviour. This special direction is known as the optic axis of the material. Light propagating parallel to the optic axis (whose polarization is always perpendicular to the optic axis) is governed by a refractive index no (for "ordinary") regardless of its specific polarization. For rays with any other propagation direction, there is one linear polarization that would be perpendicular to the optic axis, and a ray with that polarization is called an ordinary ray and is governed by the same refractive index value no. However, for a ray propagating in the same direction but with a polarization perpendicular to that of the ordinary ray, the polarization direction will be partly in the direction of the optic axis, and this extraordinary ray will be governed by a different, direction-dependent refractive index. Because the index of refraction depends on the polarization when unpolarized light enters a uniaxial birefringent material, it is split into two beams travelling in different directions, one having the polarization of the ordinary ray and the other the polarization of the extraordinary ray. The ordinary ray will always experience a refractive index of no, whereas the refractive index of the extraordinary ray will be in between no and ne, depending on the ray direction as described by the index ellipsoid. The magnitude of the difference is quantified by the birefringence:[verification needed]

The propagation (as well as reflection coefficient) of the ordinary ray is simply described by no as if there were no birefringence involved. However, the extraordinary ray, as its name suggests, propagates unlike any wave in an isotropic optical material. Its refraction (and reflection) at a surface can be understood using the effective refractive index (a value in between no and ne). However, its power flow (given by the Poynting vector) is not exactly in the direction of the wave vector. This causes an additional shift in that beam, even when launched at normal incidence, as is popularly observed using a crystal of calcite as photographed above. Rotating the calcite crystal will cause one of the two images, that of the extraordinary ray, to rotate slightly around that of the ordinary ray, which remains fixed.[verification needed]

When the light propagates either along or orthogonal to the optic axis, such a lateral shift does not occur. In the first case, both polarizations are perpendicular to the optic axis and see the same effective refractive index, so there is no extraordinary ray. In the second case the extraordinary ray propagates at a different phase velocity (corresponding to ne) but

The simplest type of birefringence is described as uniaxial, meaning that there is a single direction governing the optical anisotropy whereas all directions perpendicular to it (or at a given angle to it) are optically equivalent. Thus rotating the material around this axis does not change its optical behaviour. This special direction is known as the optic axis of the material. Light propagating parallel to the optic axis (whose polarization is always perpendicular to the optic axis) is governed by a refractive index no (for "ordinary") regardless of its specific polarization. For rays with any other propagation direction, there is one linear polarization that would be perpendicular to the optic axis, and a ray with that polarization is called an ordinary ray and is governed by the same refractive index value no. However, for a ray propagating in the same direction but with a polarization perpendicular to that of the ordinary ray, the polarization direction will be partly in the direction of the optic axis, and this extraordinary ray will be governed by a different, direction-dependent refractive index. Because the index of refraction depends on the polarization when unpolarized light enters a uniaxial birefringent material, it is split into two beams travelling in different directions, one having the polarization of the ordinary ray and the other the polarization of the extraordinary ray. The ordinary ray will always experience a refractive index of no, whereas the refractive index of the extraordinary ray will be in between no and ne, depending on the ray direction as described by the index ellipsoid. The magnitude of the difference is quantified by the birefringence:[verification needed]

Measurement

Birefringence and other polarization-based optical effects (such as optical rotation and linear or circular dichroism) can be measured by measuring the changes in the polarization of light passing through the material. These measurements are known as polarimetry. Polarized light microscopes, which contain two polarizers that are at 90° to each other on either side of the sample, are used to visualize birefringence. The addition of quarter-wave plates permit examination of circularly polarized light. Birefringence measurements have been made with phase-modulated systems for examining the transient flow behaviour of fluids.[11][12]

Birefringence of lipid bilayers can be measured using dual-polarization interferometry. This provides a measure of the degree of order within these fluid layers and how this order is disrupted when the layer interacts with other biomolecules.

Applications

optical rotation and linear or circular dichroism) can be measured by measuring the changes in the polarization of light passing through the material. These measurements are known as polarimetry. Polarized light microscopes, which contain two polarizers that are at 90° to each other on either side of the sample, are used to visualize birefringence. The addition of quarter-wave plates permit examination of circularly polarized light. Birefringence measurements have been made with phase-modulated systems for examining the transient flow behaviour of fluids.[11][12]

Birefringence of lipid bilayers can be measured using dual-polarization interferometry. This provides a measure of the degree of order within these fluid layers and how thi

Birefringence of lipid bilayers can be measured using dual-polarization interferometry. This provides a measure of the degree of order within these fluid layers and how this order is disrupted when the layer interacts with other biomolecules.

Birefringence is used in many optical devices. Liquid-crystal displays, the most common sort of flat-panel display, cause their pixels to become lighter or darker through rotation of the polarization (circular birefringence) of linearly polarized light as viewed through a sheet polarizer at the screen's surface. Similarly, light modulators modulate the intensity of light through electrically induced birefringence of polarized light followed by a polarizer. The Lyot filter is a specialized narrowband spectral filter employing the wavelength dependence of birefringence. Waveplates are thin birefringent sheets widely used in certain optical equipment for modifying the polarization state of light passing through it.

Birefringence also plays an important role in second-harmonic generation and other nonlinear optical components, as the crystals used for this purpose are almost always birefringent. By adjusting the angle of incidence, the effective refractive index of the extraordinary ray can be tuned in order to achieve phase matching, which is required for the efficient operation of these devices.

Medicine

Birefringence is utilized in medical diagnostics. One powerful accessory used with optical microscopes is a pair of crossed polarizing filters. Light from the source is polarized in the x direction after passing through the first polarizer, but above the specimen is a polarizer (a so-called analyzer) oriented in the y direction. Therefore, no light from the source will be accepted by the analyzer, and the field will appear dark. However, areas of the sample possessing birefringence will generally couple some o

Birefringence also plays an important role in second-harmonic generation and other nonlinear optical components, as the crystals used for this purpose are almost always birefringent. By adjusting the angle of incidence, the effective refractive index of the extraordinary ray can be tuned in order to achieve phase matching, which is required for the efficient operation of these devices.

Birefringence is utilized in medical diagnostics. One powerful accessory used with optical microscopes is a pair of crossed polarizing filters. Light from the source is polarized in the x direction after passing through the first polarizer, but above the specimen is a polarizer (a so-called analyzer) oriented in the y direction. Therefore, no light from the source will be accepted by the analyzer, and the field will appear dark. However, areas of the sample possessing birefringence will generally couple some of the x-polarized light into the y polarization; these areas will then appear bright against the dark background. Modifications to this basic principle can differentiate between positive and negative birefringence.