Control Coefficient (biochemistry)
Control coefficients are used to describe how much influence (i.e., control) a given reaction step has on the steady-state flux or species concentration level. In practice, this can be accomplished by changing the expression level of a given enzyme and measuring the resulting changes in flux and metabolite levels. Control coefficients form a central component of metabolic control analysis. There are two primary control coefficients: * Flux Control Coefficients * Concentration Control Coefficients. The simplest way to look at control coefficients is as the scaled derivatives of the steady-state change in an observable with respect to a change in enzyme activity. For example, the flux control coefficients can be written as: C_^J=\frac \frac=\frac \approx \frac while the concentration control coefficients can be written as: C_^=\frac \frac=\frac \approx \frac Control coefficients can have any value that includes negative and positive values. A negative value indicates that the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Metabolic Control Analysis
Metabolic control analysis (MCA) is a mathematical framework for describing metabolic, signaling, and genetic pathways. MCA quantifies how variables,elastsuch as fluxes and species concentrations, depend on network parameters. In particular, it is able to describe how network-dependent properties, called control coefficients, depend on local properties called elasticities or Elasticity Coefficients. MCA was originally developed to describe the control in metabolic pathways but was subsequently extended to describe signaling and genetic networks. MCA has sometimes also been referred to as ''Metabolic Control Theory,'' but this terminology was rather strongly opposed by Henrik Kacser, one of the founders. More recent work has shown that MCA can be mapped directly on to classical control theory and are as such equivalent. Biochemical systems theory is a similar formalism, though with rather different objectives. Both are evolutions of an earlier theoretical analysis by Joseph Higg ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rate-determining Step
In chemical kinetics, the overall rate of a reaction is often approximately determined by the slowest step, known as the rate-determining step (RDS or RD-step or r/d step) or rate-limiting step. For a given reaction mechanism, the prediction of the corresponding rate equation (for comparison with the experimental rate law) is often simplified by using this approximation of the rate-determining step. In principle, the time evolution of the reactant and product concentrations can be determined from the set of simultaneous rate equations for the individual steps of the mechanism, one for each step. However, the analytical solution of these differential equations is not always easy, and in some cases numerical integration may even be required. The hypothesis of a single rate-determining step can greatly simplify the mathematics. In the simplest case the initial step is the slowest, and the overall rate is just the rate of the first step. Also, the rate equations for mechanisms with a s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Biochemistry Methods
The following outline is provided as an overview of and topical guide to biochemistry: Biochemistry – study of chemical processes in living organisms, including living matter. Biochemistry governs all living organisms and living processes. Applications of biochemistry * Testing ** Ames test – salmonella bacteria is exposed to a chemical under question (a food additive, for example), and changes in the way the bacteria grows are measured. This test is useful for screening chemicals to see if they mutate the structure of DNA and by extension identifying their potential to cause cancer in humans. ** Pregnancy test – one uses a urine sample and the other a blood sample. Both detect the presence of the hormone human chorionic gonadotropin (hCG). This hormone is produced by the placenta shortly after implantation of the embryo into the uterine walls and accumulates. ** Breast cancer screening – identification of risk by testing for mutations in two genes&md ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Metabolism
Metabolism (, from el, μεταβολή ''metabolē'', "change") is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the conversion of food to building blocks for proteins, lipids, nucleic acids, and some carbohydrates; and the elimination of metabolic wastes. These enzyme-catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. The word metabolism can also refer to the sum of all chemical reactions that occur in living organisms, including digestion and the transportation of substances into and between different cells, in which case the above described set of reactions within the cells is called intermediary (or intermediate) metabolism. Metabolic reactions may be categorized as ''catabolic'' – the ''breaking down'' of compounds (for example, of glucose to pyruvate by ce ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematical And Theoretical Biology
Mathematical and theoretical biology, or biomathematics, is a branch of biology which employs theoretical analysis, mathematical models and abstractions of the living organisms to investigate the principles that govern the structure, development and behavior of the systems, as opposed to experimental biology which deals with the conduction of experiments to prove and validate the scientific theories. The field is sometimes called mathematical biology or biomathematics to stress the mathematical side, or theoretical biology to stress the biological side. Theoretical biology focuses more on the development of theoretical principles for biology while mathematical biology focuses on the use of mathematical tools to study biological systems, even though the two terms are sometimes interchanged. Mathematical biology aims at the mathematical representation and modeling of biological processes, using techniques and tools of applied mathematics. It can be useful in both theoretical and prac ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |