Contradiction
In traditional logic, a contradiction involves a proposition conflicting either with itself or established fact. It is often used as a tool to detect disingenuous beliefs and bias. Illustrating a general tendency in applied logic, Aristotle's law of noncontradiction states that "It is impossible that the same thing can at the same time both belong and not belong to the same object and in the same respect." In modern formal logic and type theory, the term is mainly used instead for a ''single'' proposition, often denoted by the falsum symbol \bot; a proposition is a contradiction if false can be derived from it, using the rules of the logic. It is a proposition that is unconditionally false (i.e., a self-contradictory proposition). This can be generalized to a collection of propositions, which is then said to "contain" a contradiction. History By creation of a paradox, Plato's '' Euthydemus'' dialogue demonstrates the need for the notion of ''contradiction''. In the ensuing ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Law Of Noncontradiction
In logic, the law of noncontradiction (LNC; also known as the law of contradiction, principle of non-contradiction (PNC), or the principle of contradiction) states that for any given proposition, the proposition and its negation cannot both be simultaneously true, e.g. the proposition "''the house is white''" and its negation "''the house is not white''" are mutually exclusive. Formally, this is expressed as the tautology ¬(p ∧ ¬p). The law is not to be confused with the law of excluded middle which states that at least one of two propositions like "the house is white" and "the house is not white" holds. One reason to have this law is the principle of explosion, which states that anything follows from a contradiction. The law is employed in a ''reductio ad absurdum'' proof. To express the fact that the law is tenseless and to avoid equivocation, sometimes the law is amended to say "contradictory propositions cannot both be true 'at the same time and in the same sense'". ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Principle Of Explosion
In classical logic, intuitionistic logic, and similar logical systems, the principle of explosion is the law according to which any statement can be proven from a contradiction. That is, from a contradiction, any proposition (including its negation) can be inferred; this is known as deductive explosion. The proof of this principle was first given by 12th-century French philosopher William of Soissons. Due to the principle of explosion, the existence of a contradiction ( inconsistency) in a formal axiomatic system is disastrous; since any statement can be proven, it trivializes the concepts of truth and falsity. Around the turn of the 20th century, the discovery of contradictions such as Russell's paradox at the foundations of mathematics thus threatened the entire structure of mathematics. Mathematicians such as Gottlob Frege, Ernst Zermelo, Abraham Fraenkel, and Thoralf Skolem put much effort into revising set theory to eliminate these contradictions, resulting in the mo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Propositional Logic
The propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. Sometimes, it is called ''first-order'' propositional logic to contrast it with System F, but it should not be confused with first-order logic. It deals with propositions (which can be true or false) and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of conjunction, disjunction, implication, biconditional, and negation. Some sources include other connectives, as in the table below. Unlike first-order logic, propositional logic does not deal with non-logical objects, predicates about them, or quantifiers. However, all the machinery of propositional logic is included in first-order logic and higher-order logics. In this sense, propositional logi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Paradox
A paradox is a logically self-contradictory statement or a statement that runs contrary to one's expectation. It is a statement that, despite apparently valid reasoning from true or apparently true premises, leads to a seemingly self-contradictory or a logically unacceptable conclusion. A paradox usually involves contradictory-yet-interrelated elements that exist simultaneously and persist over time. They result in "persistent contradiction between interdependent elements" leading to a lasting "unity of opposites". In logic, many paradoxes exist that are known to be invalid arguments, yet are nevertheless valuable in promoting critical thinking, while other paradoxes have revealed errors in definitions that were assumed to be rigorous, and have caused axioms of mathematics and logic to be re-examined. One example is Russell's paradox, which questions whether a "list of all lists that do not contain themselves" would include itself and showed that attempts to found set theory on ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Type Theory
In mathematics and theoretical computer science, a type theory is the formal presentation of a specific type system. Type theory is the academic study of type systems. Some type theories serve as alternatives to set theory as a foundation of mathematics. Two influential type theories that have been proposed as foundations are: * Typed λ-calculus of Alonzo Church * Intuitionistic type theory of Per Martin-Löf Most computerized proof-writing systems use a type theory for their foundation. A common one is Thierry Coquand's Calculus of Inductive Constructions. History Type theory was created to avoid paradoxes in naive set theory and formal logic, such as Russell's paradox which demonstrates that, without proper axioms, it is possible to define the set of all sets that are not members of themselves; this set both contains itself and does not contain itself. Between 1902 and 1908, Bertrand Russell proposed various solutions to this problem. By 1908, Russell arrive ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
False (logic)
In logic, false (Its noun form is falsity) or untrue is the state of possessing negative truth value and is a nullary logical connective. In a truth-functional system of propositional logic, it is one of two postulated truth values, along with its negation, truth. Usual notations of the false are 0 (especially in Boolean logic and computer science), O (in prefix notation, O''pq''), and the up tack symbol \bot. Another approach is used for several formal theories (e.g., intuitionistic propositional calculus), where a propositional constant (i.e. a nullary connective), \bot, is introduced, the truth value of which being always false in the sense above. It can be treated as an absurd proposition, and is often called absurdity. In classical logic and Boolean logic In Boolean logic, each variable denotes a truth value which can be either true (1), or false (0). In a classical propositional calculus, each proposition will be assigned a truth value of either ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Formal Logic
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the study of deductively valid inferences or logical truths. It examines how conclusions follow from premises based on the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. Informal logic examines arguments expressed in natural language whereas formal logic uses formal language. When used as a countable noun, the term "a logic" refers to a specific logical formal system that articulates a proof system. Logic plays a central role in many fields, such as philosophy, mathematics, computer science, and linguistics. Logic studies arguments, which consist of a set of premises that leads to a conclusion. An example is the argument from the premises "it's Sunday" and "if it's Sunday then I don't have to work" leading to the conclusion "I don't have to wor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Socrates
Socrates (; ; – 399 BC) was a Ancient Greek philosophy, Greek philosopher from Classical Athens, Athens who is credited as the founder of Western philosophy and as among the first moral philosophers of the Ethics, ethical tradition of thought. An enigmatic figure, Socrates authored no texts and is known mainly through the posthumous accounts of classical writers, particularly his students Plato and Xenophon. These accounts are written as dialogues, in which Socrates and his interlocutors examine a subject in the style of question and answer; they gave rise to the Socratic dialogue literary genre. Contradictory accounts of Socrates make a reconstruction of his philosophy nearly impossible, a situation known as the Socratic problem. Socrates was a polarizing figure in Athenian society. In 399 BC, he was accused of Asebeia, impiety and corrupting the youth. After Trial of Socrates, a trial that lasted a day, he was sentenced to death. He spent his last day in prison ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Aristotle
Aristotle (; 384–322 BC) was an Ancient Greek philosophy, Ancient Greek philosopher and polymath. His writings cover a broad range of subjects spanning the natural sciences, philosophy, linguistics, economics, politics, psychology, and the arts. As the founder of the Peripatetic school of philosophy in the Lyceum (classical), Lyceum in Athens, he began the wider Aristotelianism, Aristotelian tradition that followed, which set the groundwork for the development of modern science. Little is known about Aristotle's life. He was born in the city of Stagira (ancient city), Stagira in northern Greece during the Classical Greece, Classical period. His father, Nicomachus (father of Aristotle), Nicomachus, died when Aristotle was a child, and he was brought up by a guardian. At around eighteen years old, he joined Plato's Platonic Academy, Academy in Athens and remained there until the age of thirty seven (). Shortly after Plato died, Aristotle left Athens and, at the request ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Classical Logic
Classical logic (or standard logic) or Frege–Russell logic is the intensively studied and most widely used class of deductive logic. Classical logic has had much influence on analytic philosophy. Characteristics Each logical system in this class shares characteristic properties: Gabbay, Dov, (1994). 'Classical vs non-classical logic'. In D.M. Gabbay, C.J. Hogger, and J.A. Robinson, (Eds), ''Handbook of Logic in Artificial Intelligence and Logic Programming'', volume 2, chapter 2.6. Oxford University Press. # Law of excluded middle and double negation elimination # Law of noncontradiction, and the principle of explosion # Monotonicity of entailment and idempotency of entailment # Commutativity of conjunction # De Morgan duality: every logical operator is dual to another While not entailed by the preceding conditions, contemporary discussions of classical logic normally only include propositional and first-order logics. Shapiro, Stewart (2000). Classical Logic. In St ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bottom Type
In type theory, a theory within mathematical logic, the bottom type of a type system is the type that is a subtype of all other types. Where such a type exists, it is often represented with the up tack (⊥) symbol. Relation with the empty type When the bottom type is uninhabited, a function whose return type is bottom cannot return any value, not even the lone value of a unit type. In such a language, the bottom type may therefore be known as the zero, never or empty type which, in the Curry–Howard correspondence, corresponds to falsity. However, when the bottom type is inhabited, it is then different from the empty type. If a type system is sound, the bottom type is uninhabited and a term of bottom type represents a logical contradiction. In such systems, typically no distinction is drawn between the bottom type and the empty type, and the terms may be used interchangeably. Computer science applications In subtyping systems, the bottom type is a subtype of all types. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |