Conformal Weight
   HOME
*





Conformal Weight
A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. In two dimensions, there is an infinite-dimensional algebra of local conformal transformations, and conformal field theories can sometimes be exactly solved or classified. Conformal field theory has important applications to condensed matter physics, statistical mechanics, quantum statistical mechanics, and string theory. Statistical and condensed matter systems are indeed often conformally invariant at their thermodynamic or quantum critical points. Scale invariance vs conformal invariance In quantum field theory, scale invariance is a common and natural symmetry, because any fixed point of the renormalization group is by definition scale invariant. Conformal symmetry is stronger than scale invariance, and one needs additional assumptions to argue that it should appear in nature. The basic idea behind its plausibility is that ''local'' scale invariant theories have their c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Field Theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. QFT treats particles as excited states (also called Quantum, quanta) of their underlying quantum field (physics), fields, which are more fundamental than the particles. The equation of motion of the particle is determined by minimization of the Lagrangian, a functional of fields associated with the particle. Interactions between particles are described by interaction terms in the Lagrangian (field theory), Lagrangian involving their corresponding quantum fields. Each interaction can be visually represented by Feynman diagrams according to perturbation theory (quantum mechanics), perturbation theory in quantum mechanics. History Quantum field theory emerged from the wo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Minimal Model (physics)
In theoretical physics, a minimal model or Virasoro minimal model is a two-dimensional conformal field theory whose spectrum is built from finitely many irreducible representations of the Virasoro algebra. Minimal models have been classified and solved, and found to obey an ADE classification. The term minimal model can also refer to a rational CFT based on an algebra that is larger than the Virasoro algebra, such as a W-algebra. Relevant representations of the Virasoro algebra Representations In minimal models, the central charge of the Virasoro algebra takes values of the type : c_ = 1 - 6 \ . where p, q are coprime integers such that p,q \geq 2. Then the conformal dimensions of degenerate representations are : h_ = \frac\ , \quad \text\ r,s\in\mathbb^*\ , and they obey the identities : h_ = h_ = h_\ . The spectrums of minimal models are made of irreducible, degenerate lowest-weight representations of the Virasoro algebra, whose conformal dimensions are of the type h_ with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


State Space (physics)
In physics, a state space is an abstract space in which different "positions" represent, not literal locations, but rather states of some physical system. This makes it a type of phase space. Specifically, in quantum mechanics a state space is a complex Hilbert space in which the possible instantaneous ? ">Help:Find_sources.html" ;"title="Help:Find sources">? states of the system may be described by unit vectors. These quantum state, state vectors, using Paul Dirac, Dirac's bra–ket notation, can often be treated like coordinate vectors and operated on using the rules of linear algebra. This Dirac formalism of quantum mechanics can replace calculation of complicated integrals with simpler vector operations. See also *Configuration space (physics) for the space of possible positions that a physical system may attain *Configuration space (mathematics) for the space of positions of particles in a topological space *State space (controls) for information about state space in contro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Renormalization Group Flow
In theoretical physics, the term renormalization group (RG) refers to a formal apparatus that allows systematic investigation of the changes of a physical system as viewed at different scales. In particle physics, it reflects the changes in the underlying force laws (codified in a quantum field theory) as the energy scale at which physical processes occur varies, energy/momentum and resolution distance scales being effectively conjugate under the uncertainty principle. A change in scale is called a scale transformation. The renormalization group is intimately related to ''scale invariance'' and ''conformal invariance'', symmetries in which a system appears the same at all scales (so-called self-similarity). As the scale varies, it is as if one is changing the magnifying power of a notional microscope viewing the system. In so-called renormalizable theories, the system at one scale will generally be seen to consist of self-similar copies of itself when viewed at a smaller sc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


C-theorem
In quantum field theory the ''C''-theorem states that there exists a positive real function, C(g^_i,\mu), depending on the coupling constants of the quantum field theory considered, g^_i, and on the energy scale, \mu^_, which has the following properties: *C(g^_i,\mu) decreases monotonically under the renormalization group (RG) flow. *At fixed points of the RG flow, which are specified by a set of fixed-point couplings g^*_i, the function C(g^*_i,\mu)=C_* is a constant, independent of energy scale. The theorem formalizes the notion that theories at high energies have more degrees of freedom than theories at low energies and that information is lost as we flow from the former to the latter. Two-dimensional case Alexander Zamolodchikov proved in 1986 that two-dimensional quantum field theory always has such a ''C''-function. Moreover, at fixed points of the RG flow, which correspond to conformal field theories, Zamolodchikov's ''C''-function is equal to the central charge of the c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Alexander Zamolodchikov
Alexander Borisovich Zamolodchikov (russian: Алекса́ндр Бори́сович Замоло́дчиков; born September 18, 1952) is a Russian physicist, known for his contributions to condensed matter physics, two-dimensional conformal field theory, and string theory, and is currently the C.N. Yang/Wei Deng Endowed Chair of Physics at Stony Brook University. Biography Born in Novo-Ivankovo, now part of Dubna, Zamolodchikov earned a M.Sc. in Nuclear Engineering (1975) from Moscow Institute of Physics and Technology, a Ph.D. in Physics from the Institute for Theoretical and Experimental Physics (1978). He joined the research staff of Landau Institute for Theoretical Physics (1978) where he got an honorary doctorate (1983). He co-authored the famous BPZ paper "Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory", with Alexander Polyakov and Alexander Belavin. He joined Rutgers University (1990) where he co-founded Rutgers New High Energy Theory Center ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conformal Anomaly
A conformal anomaly, scale anomaly, trace anomaly or Weyl anomaly is an anomaly, i.e. a quantum phenomenon that breaks the conformal symmetry of the classical theory. A classically conformal theory is a theory which, when placed on a surface with arbitrary background metric, has an action that is invariant under rescalings of the background metric (Weyl transformations), combined with corresponding transformations of the other fields in the theory. A conformal quantum theory is one whose partition function is unchanged by rescaling the metric. The variation of the action with respect to the background metric is proportional to the stress tensor, and therefore the variation with respect to a conformal rescaling is proportional to the trace of the stress tensor. As a result, the trace of the stress tensor must vanish for a conformally invariant theory. In the presence of a conformal anomaly the trace of the stress tensor can nevertheless acquire a non-vanishing expectation. For ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Virasoro Algebra
In mathematics, the Virasoro algebra (named after the physicist Miguel Ángel Virasoro) is a complex Lie algebra and the unique central extension of the Witt algebra. It is widely used in two-dimensional conformal field theory and in string theory. Definition The Virasoro algebra is spanned by generators for and the central charge . These generators satisfy ,L_n0 and The factor of 1/12 is merely a matter of convention. For a derivation of the algebra as the unique central extension of the Witt algebra, see derivation of the Virasoro algebra. The Virasoro algebra has a presentation in terms of two generators (e.g. 3 and −2) and six relations. Representation theory Highest weight representations A highest weight representation of the Virasoro algebra is a representation generated by a primary state: a vector v such that : L_ v = 0, \quad L_0 v = hv, where the number is called the conformal dimension or conformal weight of v.P. Di Francesco, P. Mathieu, and D. S ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Lie Algebra Extension
In the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extension is an enlargement of a given Lie algebra by another Lie algebra . Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges. Starting with a polynomial loop algebra over finite-dimensional simple Lie algebra and performing two extensions, a central extension and an extension by a derivation, one obtains a Lie algebra which is isomorphic with an untwisted affine Kac–Moody algebra. Using the centrally extended loop algebra one may construct a current algebra in two spacetime dimensions. The Virasoro algebra is the universal central extension of the Witt algebra. Central extensions are needed in physi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Killing Vector Field
In mathematics, a Killing vector field (often called a Killing field), named after Wilhelm Killing, is a vector field on a Riemannian manifold (or pseudo-Riemannian manifold) that preserves the metric. Killing fields are the infinitesimal generators of isometries; that is, flows generated by Killing fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the Killing vector will not distort distances on the object. Definition Specifically, a vector field ''X'' is a Killing field if the Lie derivative with respect to ''X'' of the metric ''g'' vanishes: :\mathcal_ g = 0 \,. In terms of the Levi-Civita connection, this is :g\left(\nabla_Y X, Z\right) + g\left(Y, \nabla_Z X\right) = 0 \, for all vectors ''Y'' and ''Z''. In local coordinates, this amounts to the Killing equation :\nabla_\mu X_\nu + \nabla_ X_\mu = 0 \,. This condition is expressed ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conformal Killing Equation
In conformal geometry, a conformal Killing vector field on a manifold of dimension ''n'' with (pseudo) Riemannian metric g (also called a conformal Killing vector, CKV, or conformal colineation), is a vector field X whose (locally defined) flow defines conformal transformations, that is, preserve g up to scale and preserve the conformal structure. Several equivalent formulations, called the conformal Killing equation, exist in terms of the Lie derivative of the flow e.g. \mathcal_g = \lambda g for some function \lambda on the manifold. For n \ne 2 there are a finite number of solutions, specifying the conformal symmetry of that space, but in two dimensions, there is an infinity of solutions. The name Killing refers to Wilhelm Killing, who first investigated Killing vector fields. Densitized metric tensor and Conformal Killing vectors A vector field X is a Killing vector field if and only if its flow preserves the metric tensor g (strictly speaking for each compact subsets ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Witt Algebra
In mathematics, the complex Witt algebra, named after Ernst Witt, is the Lie algebra of meromorphic vector fields defined on the Riemann sphere that are holomorphic except at two fixed points. It is also the complexification of the Lie algebra of polynomial vector fields on a circle, and the Lie algebra of derivations of the ring C 'z'',''z''−1 There are some related Lie algebras defined over finite fields, that are also called Witt algebras. The complex Witt algebra was first defined by Cartan (1909), and its analogues over finite fields were studied by Witt in the 1930s. Basis A basis for the Witt algebra is given by the vector fields L_n=-z^ \frac, for ''n'' in ''\mathbb Z''. The Lie bracket of two vector fields is given by : _m,L_n(m-n)L_. This algebra has a central extension called the Virasoro algebra that is important in two-dimensional conformal field theory and string theory. Note that by restricting ''n'' to 1,0,-1, one gets a subalgebra. Taken over th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]