HOME
*





Conformal Invariance
In mathematical physics, the conformal symmetry of spacetime is expressed by an extension of the Poincaré group. The extension includes special conformal transformations and dilations. In three spatial plus one time dimensions, conformal symmetry has 15 degrees of freedom: ten for the Poincaré group, four for special conformal transformations, and one for a dilation. Harry Bateman and Ebenezer Cunningham were the first to study the conformal symmetry of Maxwell's equations. They called a generic expression of conformal symmetry a spherical wave transformation. General relativity in two spacetime dimensions also enjoys conformal symmetry. Generators The conformal group has the following representation: : \begin & M_ \equiv i(x_\mu\partial_\nu-x_\nu\partial_\mu) \,, \\ &P_\mu \equiv-i\partial_\mu \,, \\ &D \equiv-ix_\mu\partial^\mu \,, \\ &K_\mu \equiv i(x^2\partial_\mu-2x_\mu x_\nu\partial^\nu) \,, \end where M_ are the Lorentz generators, P_\mu generates translations, D gene ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Physics
Mathematical physics refers to the development of mathematics, mathematical methods for application to problems in physics. The ''Journal of Mathematical Physics'' defines the field as "the application of mathematics to problems in physics and the development of mathematical methods suitable for such applications and for the formulation of physical theories". An alternative definition would also include those mathematics that are inspired by physics (also known as physical mathematics). Scope There are several distinct branches of mathematical physics, and these roughly correspond to particular historical periods. Classical mechanics The rigorous, abstract and advanced reformulation of Newtonian mechanics adopting the Lagrangian mechanics and the Hamiltonian mechanics even in the presence of constraints. Both formulations are embodied in analytical mechanics and lead to understanding the deep interplay of the notions of symmetry (physics), symmetry and conservation law, con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Minkowski Metric
In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of Three-dimensional space, three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two Event (relativity), events is independent of the inertial frame of reference in which they are recorded. Although initially developed by mathematician Hermann Minkowski for Maxwell's equations of electromagnetism, the mathematical structure of Minkowski spacetime was shown to be implied by the postulates of special relativity. Minkowski space is closely associated with Albert Einstein, Einstein's theories of special relativity and general relativity and is the most common mathematical structure on which special relativity is formulated. While the individual components in Euclidean space and time may differ due to length contraction and time dilation, in Minkowski spacetime, all frames of reference will agree on the total distance in spacetime betwee ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Field Theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. QFT treats particles as excited states (also called Quantum, quanta) of their underlying quantum field (physics), fields, which are more fundamental than the particles. The equation of motion of the particle is determined by minimization of the Lagrangian, a functional of fields associated with the particle. Interactions between particles are described by interaction terms in the Lagrangian (field theory), Lagrangian involving their corresponding quantum fields. Each interaction can be visually represented by Feynman diagrams according to perturbation theory (quantum mechanics), perturbation theory in quantum mechanics. History Quantum field theory emerged from the wo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Interaction
Interaction is action that occurs between two or more objects, with broad use in philosophy and the sciences. It may refer to: Science * Interaction hypothesis, a theory of second language acquisition * Interaction (statistics) * Interactions of actors theory, created by cybernetician Gordon Pask * Fundamental interaction, in physics * Human–computer interaction * Social interaction between people Biology * Biological interaction * Cell–cell interaction * Drug interaction * Gene–environment interaction * Protein–protein interaction Chemistry * Aromatic interaction * Cation-pi interaction * Metallophilic interaction Arts and media * Interaction (album), ''Interaction'' (album), 1963, by Art Farmer's Quartet * ACM Interactions, ACM ''Interactions'', a magazine published by the Association for Computing Machinery * Interactions (The Spectacular Spider-Man), "Interactions" (''The Spectacular Spider-Man''), an episode of the animated television series * 63rd World Science F ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Supersymmetry
In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmetry (SUSY). Dozens of supersymmetric theories exist. Supersymmetry is a spacetime symmetry between two basic classes of particles: bosons, which have an integer-valued spin and follow Bose–Einstein statistics, and fermions, which have a half-integer-valued spin and follow Fermi–Dirac statistics. In supersymmetry, each particle from one class would have an associated particle in the other, known as its superpartner, the spin of which differs by a half-integer. For example, if the electron exists in a supersymmetric theory, then there would be a particle called a ''"selectron"'' (superpartner electron), a bosonic partner of the electron. In the simplest supersymmetry theories, with perfectly " unbroken" supersymmetry, each pair of superpartners would share the same mass and intern ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetry Group
In group theory, the symmetry group of a geometric object is the group of all transformations under which the object is invariant, endowed with the group operation of composition. Such a transformation is an invertible mapping of the ambient space which takes the object to itself, and which preserves all the relevant structure of the object. A frequent notation for the symmetry group of an object ''X'' is ''G'' = Sym(''X''). For an object in a metric space, its symmetries form a subgroup of the isometry group of the ambient space. This article mainly considers symmetry groups in Euclidean geometry, but the concept may also be studied for more general types of geometric structure. Introduction We consider the "objects" possessing symmetry to be geometric figures, images, and patterns, such as a wallpaper pattern. For symmetry of physical objects, one may also take their physical composition as part of the pattern. (A pattern may be specified formally as a scalar field, a funct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coleman–Mandula Theorem
In theoretical physics, the Coleman–Mandula theorem is a no-go theorem stating that spacetime and internal symmetries can only combine in a trivial way. This means that the charges associated with internal symmetries must always transform as Lorentz scalars. Some notable exceptions to the no-go theorem are conformal symmetry and supersymmetry. It is named after Sidney Coleman and Jeffrey Mandula who proved it in 1967 as the culmination of a series of increasingly generalized no-go theorems investigating how internal symmetries can be combined with spacetime symmetries. The supersymmetric generalization is known as the Haag–Łopuszański–Sohnius theorem. History In the early 1960s, the global \text(3) symmetry associated with the eightfold way was shown to successfully describe the hadron spectrum for hadrons of the same spin. This led to efforts to expand the global \text(3) symmetry to a larger \text(6) symmetry mixing both flavour and spin, an idea similar to that previ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Degenerate Light Cone
Degeneracy, degenerate, or degeneration may refer to: Arts and entertainment * ''Degenerate'' (album), a 2010 album by the British band Trigger the Bloodshed * Degenerate art, a term adopted in the 1920s by the Nazi Party in Germany to describe modern art ** Decadent movement, often associated with degeneracy * Dégénération, a single by Mylène Farmer * ''Degeneration'' (Nordau), an 1892 book by Max Nordau * '' Resident Evil: Degeneration'', a 2008 film * "Degenerate", a song by Blink-182 from the album ''Dude Ranch'' * "Degenerates", a song by A Day to Remember from the album ''You're Welcome'' Science, mathematics, and medicine Mathematics * Degeneracy (mathematics), a limiting case in which a class of object changes its nature so as to belong to another, usually simpler, class * Degeneracy (graph theory), a measure of the sparseness of a graph * Degeneration (algebraic geometry), the act of taking a limit of a family of varieties * Degenerate form, bilinear form '' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lorentzian Dimension
Lorentzian may refer to * Cauchy distribution, also known as the Lorentz distribution, Lorentzian function, or Cauchy–Lorentz distribution * Lorentz transformation * Lorentzian manifold See also *Lorentz (other) Lorentz is a surname and a given name. Lorentz may also refer to: Things named for Hendrik Lorentz * Lorentz factor, Doppler effect *The Lorentz-Lorenz law, the law regarding the refractive index of a substance discovered independently by Hendri ... * Lorenz (other), spelled without the 't' {{Disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Euclidean Conformal Transformations
Euclidean (or, less commonly, Euclidian) is an adjective derived from the name of Euclid, an ancient Greek mathematician. It is the name of: Geometry *Euclidean space, the two-dimensional plane and three-dimensional space of Euclidean geometry as well as their higher dimensional generalizations *Euclidean geometry, the study of the properties of Euclidean spaces *Non-Euclidean geometry, systems of points, lines, and planes analogous to Euclidean geometry but without uniquely determined parallel lines *Euclidean distance, the distance between pairs of points in Euclidean spaces *Euclidean ball, the set of points within some fixed distance from a center point Number theory *Euclidean division, the division which produces a quotient and a remainder *Euclidean algorithm, a method for finding greatest common divisors *Extended Euclidean algorithm, a method for solving the Diophantine equation ''ax'' + ''by'' = ''d'' where ''d'' is the greatest common divisor of ''a'' and ''b'' *Euc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Conformal Field Theory
A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. In two dimensions, there is an infinite-dimensional algebra of local conformal transformations, and conformal field theories can sometimes be exactly solved or classified. Conformal field theory has important applications to condensed matter physics, statistical mechanics, quantum statistical mechanics, and string theory. Statistical and condensed matter systems are indeed often conformally invariant at their thermodynamic or quantum critical points. Scale invariance vs conformal invariance In quantum field theory, scale invariance is a common and natural symmetry, because any fixed point of the renormalization group is by definition scale invariant. Conformal symmetry is stronger than scale invariance, and one needs additional assumptions to argue that it should appear in nature. The basic idea behind its plausibility is that ''local'' scale invariant theories have their ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Conformal Geometry
In mathematics, conformal geometry is the study of the set of angle-preserving ( conformal) transformations on a space. In a real two dimensional space, conformal geometry is precisely the geometry of Riemann surfaces. In space higher than two dimensions, conformal geometry may refer either to the study of conformal transformations of what are called "flat spaces" (such as Euclidean spaces or spheres), or to the study of conformal manifolds which are Riemannian or pseudo-Riemannian manifolds with a class of metrics that are defined up to scale. Study of the flat structures is sometimes termed Möbius geometry, and is a type of Klein geometry. Conformal manifolds A conformal manifold is a pseudo-Riemannian manifold equipped with an equivalence class of metric tensors, in which two metrics ''g'' and ''h'' are equivalent if and only if :h = \lambda^2 g , where ''λ'' is a real-valued smooth function defined on the manifold and is called the conformal factor. An equivalence cla ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]