HOME



picture info

Compressed Hydrogen
Compressed hydrogen (CH2, CGH2 or CGH2) is the gaseous state of the element hydrogen kept under pressure. Compressed hydrogen in hydrogen tanks at 350 bar (5,000 psi) and 700 bar (10,000 psi) is used for mobile hydrogen storage in hydrogen vehicles. It is used as a fuel gas. Infrastructure Compressed hydrogen is used in hydrogen pipeline transport and in compressed hydrogen tube trailer transport. See also * Combined cycle powered railway locomotive * Cryo-adsorption *Gas compressor * Gasoline gallon equivalent *Hydrogen compressor *Hydrogen safety *Liquid hydrogen * Liquefaction of gases *Metallic hydrogen * Slush hydrogen *Standard cubic foot *Timeline of hydrogen technologies This is a timeline of the history of hydrogen technology. Timeline 16th century * c. 1520 – First recorded observation of hydrogen by Paracelsus through dissolution of metals (iron, zinc, and tin) in sulfuric acid. 17th century * 1625 – F ... References External links COMPRESSED HYDROGEN ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Asphyxiant Gas
An asphyxiant gas, also known as a simple asphyxiant, is a nontoxic or minimally toxic gas which reduces or displaces the normal oxygen concentration in breathing air. Breathing of oxygen-depleted air can lead to death by asphyxiation (suffocation). Because asphyxiant gases are relatively inert and odorless, their presence in high concentration may not be noticed, except in the case of carbon dioxide ( hypercapnia). Toxic gases, by contrast, cause death by other mechanisms, such as competing with oxygen on the cellular level (e.g. carbon monoxide) or directly damaging the respiratory system (e.g. phosgene). Far smaller quantities of these are deadly. Notable examples of asphyxiant gases are methane, nitrogen, argon, helium, butane and propane. Along with trace gases such as carbon dioxide and ozone, these compose 79% of Earth's atmosphere. Asphyxia hazard Asphyxiant gases in the breathing air are normally not hazardous. Only where elevated concentrations of asphyxiant g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gasoline Gallon Equivalent
Gasoline gallon equivalent (GGE) or gasoline-equivalent gallon (GEG) is the amount of an alternative fuel it takes to equal the energy content of one liquid gallon of gasoline. GGE allows consumers to compare the energy content of competing fuels against a commonly known fuel, namely gasoline. It is difficult to compare the cost of gasoline with other fuels if they are sold in different units and physical forms. GGE attempts to solve this. One GGE of CNG and one GGE of electricity have exactly the same energy content as one gallon of gasoline. In this way, GGE provides a direct comparison of gasoline with alternative fuels, including those sold as a gas (natural gas, propane, hydrogen) and as metered electricity. Definition In 1994, the US National Institute of Standards and Technology (NIST) defined "gasoline gallon equivalent (GGE) s5.660 pounds of natural gas." Compressed natural gas (CNG), for example, is a gas rather than a liquid. It can be measured by its volume in sta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fuel Gas
Fuel gas is one of a number of fuels that under ordinary conditions are gaseous. Most fuel gases are composed of hydrocarbons (such as methane and propane), hydrogen, carbon monoxide, or mixtures thereof. Such gases are sources of energy that can be readily transmitted and distributed through pipes. Fuel gas is contrasted with liquid fuels and solid fuels, although some fuel gases are Liquefaction of gases, liquefied for storage or transport (for example, autogas and Liquefied petroleum gas, liquified petroleum gas). While their gaseous nature has advantages, avoiding the difficulty of transporting solid fuel and the dangers of spillage inherent in liquid fuels, it also has limitations. It is possible for a fuel gas to be undetected and cause a gas explosion. For this reason, odorizers are added to most fuel gases. The most common type of fuel gas in current use is natural gas. Types of fuel gas There are two broad classes of fuel gases, based not on their chemical composition ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hydrogen Storage
Several methods exist for storing hydrogen. These include mechanical approaches such as using high pressures and low temperatures, or employing chemical compounds that release H2 upon demand. While large amounts of hydrogen are produced by various industries, it is mostly consumed at the site of production, notably for the synthesis of ammonia. For many years hydrogen has been stored as compressed gas or cryogenic liquid, and transported as such in cylinders, tubes, and cryogenic tanks for use in industry or as propellant in space programs. The overarching challenge is the very low boiling point of H2: it boils around 20.268 K (−252.882 °C or −423.188 °F). Achieving such low temperatures requires expending significant energy. Although molecular hydrogen has very high energy density on a mass basis, partly because of its low molecular weight, as a gas at ambient conditions it has very low energy density by volume. If it is to be used as fuel stored on board a vehic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hydrogen Technologies
Hydrogen technologies are technologies that relate to the production and use of hydrogen as a part hydrogen economy. Hydrogen technologies are applicable for many uses. Some hydrogen technologies are carbon neutral and could have a role in preventing climate change and a possible future hydrogen economy. Hydrogen is a chemical widely used in various applications including ammonia production, oil refining and energy. The most common methods for producing hydrogen on an industrial scale are: Steam reforming, oil reforming, coal gasification, water electrolysis. Hydrogen is not a primary energy source, because it is not naturally occurring as a fuel. It is, however, widely regarded as an ideal energy storage medium, due to the ease with which electricity can convert water into hydrogen and oxygen through electrolysis and can be converted back to electrical power using a fuel cell or hydrogen turbine. There are a wide number of different types of fuel and electrolysis ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hydrogen Physics
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter. Under standard conditions, hydrogen is a gas of diatomic molecules with the chemical formula, formula , called dihydrogen, or sometimes hydrogen gas, molecular hydrogen, or simply hydrogen. Dihydrogen is colorless, odorless, non-toxic, and highly combustible. Stars, including the Sun, mainly consist of hydrogen in a plasma state, while on Earth, hydrogen is found as the gas (dihydrogen) and in molecular forms, such as in water and organic compounds. The most common isotope of hydrogen (H) consists of one proton, one electron, and no neutrons. Hydrogen gas was first produced artificially in the 17th century by the reaction of acids with metals. Henry Cavendish, in 1766–1781, identified hydrogen gas as a distinct substance and discovere ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Timeline Of Hydrogen Technologies
This is a timeline of the history of hydrogen technology. Timeline 16th century * c. 1520 – First recorded observation of hydrogen by Paracelsus through dissolution of metals (iron, zinc, and tin) in sulfuric acid. 17th century * 1625 – First description of hydrogen by Jan Baptist van Helmont, Johann Baptista van Helmont. First to use the word "gas". * 1650 – Theodore de Mayerne, Turquet de Mayerne obtains a gas or "inflammable air" by the action of dilute sulphuric acid on iron. * 1662 – Boyle's law (gas law relating pressure and volume). * 1670 – Robert Boyle produces hydrogen by reacting metals with acid. * 1672 – "New Experiments touching the Relation between Flame and Air" by Robert Boyle. * 1679 – Denis Papin – safety valve. * 1700 – Nicolas Lemery shows that the gas produced in the sulfuric acid/iron reaction is explosive in air. 18th century * 1755 – Joseph Black confirms that different gases exist. / Latent heat * 1766 – Henry Cavendish publishes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Standard Cubic Foot
A standard cubic foot (scf) is a unit representing the amount of gas (such as natural gas) contained in a volume of one cubic foot at reference temperature and pressure conditions. It is the unit commonly used when following the United States customary units, customary system, a collection of standards set by the National Institute of Standards and Technology. Another unit used for the same purpose is the standard cubic metre (Sm3), derived from SI units, representing the amount of gas contained in a volume of one cubic meter at different reference conditions. The reference conditions depend on the type of gas and differ from other standard temperature and pressure conditions. Usage The scf and the scm are units of molecular quantity for gases can be used with the ideal gas law to compute the quantity per unit of volume for other pressures and temperatures. In spite of the label "standard", there is a variety of definitions, mainly depending on the type of gas. Since, for a g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Slush Hydrogen
Slush hydrogen is a combination of liquid hydrogen and solid hydrogen at the triple point with a lower temperature and a higher density than liquid hydrogen. It is commonly formed by repeating a freeze-thaw process. This is most easily done by bringing liquid hydrogen near its boiling point and then reducing pressure using a vacuum pump. The decrease in pressure causes the liquid hydrogen to vaporize/boil - which removes latent heat, and ultimately decreases the temperature of the liquid hydrogen. Solid hydrogen is formed on the surface of the boiling liquid (between the gas/liquid interface) as the liquid is cooled and reaches its triple point. The vacuum pump is stopped, causing an increase of pressure, the solid hydrogen formed on the surface partially melts and begins to sink. The solid hydrogen is agitated in the liquid and the process is repeated. The resulting hydrogen slush has an increased density of 16–20% when compared to liquid hydrogen. It is proposed as a rocket fue ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Metallic Hydrogen
Metallic hydrogen is a phase of hydrogen in which it behaves like an electrical conductor. This phase was predicted in 1935 on theoretical grounds by Eugene Wigner and Hillard Bell Huntington. At high pressure and temperatures, metallic hydrogen can exist as a partial liquid rather than a solid, and researchers think it might be present in large quantities in the hot and gravitationally compressed interiors of Jupiter and Saturn, as well as in some exoplanets. Theoretical predictions Hydrogen under pressure Though often placed at the top of the alkali metal column in the periodic table, hydrogen does not, under ordinary conditions, exhibit the properties of an alkali metal. Instead, it forms diatomic molecules, similar to halogens and some nonmetals in the second period of the periodic table, such as nitrogen and oxygen. Diatomic hydrogen is a gas that, at atmospheric pressure, liquefies and solidifies only at very low temperature (20  K and 14 K respectively ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Liquefaction Of Gases
Liquefaction of gases is physical conversion of a gas into a liquid state (condensation). The liquefaction of gases is a complicated process that uses various compressions and expansions to achieve high pressures and very low temperatures, using, for example, turboexpanders. Uses Liquefaction processes are used for scientific, industrial and commercial purposes. Many gases can be put into a liquid state at normal atmospheric pressure by simple cooling; a few, such as carbon dioxide, require pressurization as well. Liquefaction is used for analyzing the fundamental properties of gas molecules (intermolecular forces), or for the storage of gases, for example: LPG, and in refrigeration and air conditioning. There the gas is liquefied in the '' condenser'', where the heat of vaporization is released, and evaporated in the ''evaporator,'' where the heat of vaporization is absorbed. Ammonia was the first such refrigerant, and is still in widespread use in industrial refrigeration, bu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Liquid Hydrogen
Liquid hydrogen () is the liquid state of the element hydrogen. Hydrogen is found naturally in the molecule, molecular H2 form. To exist as a liquid, H2 must be cooled below its critical point (thermodynamics), critical point of 33 Kelvins, K. However, for it to be in a fully liquid state at atmospheric pressure, H2 needs to be cooled to .IPTS-1968
iupac.org, accessed 2020-01-01
A common method of obtaining liquid hydrogen involves a compressor resembling a jet engine in both appearance and principle. Liquid hydrogen is typically used as a concentrated form of hydrogen storage. Storing it as liquid takes less space than storing it as a gas at normal temperature and pressure. However, the liquid density is very low compared to other common fuels. Once liquefied, it can be maintained as a liquid for some time in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]