Complete Valued Field
In algebra (in particular in algebraic geometry or algebraic number theory), a valuation is a function on a field that provides a measure of size or multiplicity of elements of the field. It generalizes to commutative algebra the notion of size inherent in consideration of the degree of a pole or multiplicity of a zero in complex analysis, the degree of divisibility of a number by a prime number in number theory, and the geometrical concept of contact between two algebraic or analytic varieties in algebraic geometry. A field with a valuation on it is called a valued field. Definition One starts with the following objects: *a field and its multiplicative group ''K''×, *an abelian totally ordered group . The ordering and group law on are extended to the set by the rules * for all ∈ , * for all ∈ . Then a valuation of is any map : which satisfies the following properties for all ''a'', ''b'' in ''K'': * if and only if , *, *, with equality if ''v''(''a'') ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebra
Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary algebra deals with the manipulation of variables (commonly represented by Roman letters) as if they were numbers and is therefore essential in all applications of mathematics. Abstract algebra is the name given, mostly in education, to the study of algebraic structures such as groups, rings, and fields (the term is no more in common use outside educational context). Linear algebra, which deals with linear equations and linear mappings, is used for modern presentations of geometry, and has many practical applications (in weather forecasting, for example). There are many areas of mathematics that belong to algebra, some having "algebra" in their name, such as commutative algebra, and some not, such as Galois theory. The word ''algebra'' is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Axiom
An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'. The term has subtle differences in definition when used in the context of different fields of study. As defined in classic philosophy, an axiom is a statement that is so evident or well-established, that it is accepted without controversy or question. As used in modern logic, an axiom is a premise or starting point for reasoning. As used in mathematics, the term ''axiom'' is used in two related but distinguishable senses: "logical axioms" and "non-logical axioms". Logical axioms are usually statements that are taken to be true within the system of logic they define and are often shown in symbolic form (e.g., (''A'' and ''B'') implies ''A''), while non-logical axioms (e.g., ) are actually ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Emil Artin
Emil Artin (; March 3, 1898 – December 20, 1962) was an Austrian mathematician of Armenian descent. Artin was one of the leading mathematicians of the twentieth century. He is best known for his work on algebraic number theory, contributing largely to class field theory and a new construction of L-functions. He also contributed to the pure theories of rings, groups and fields. Along with Emmy Noether, he is considered the founder of modern abstract algebra. Early life and education Parents Emil Artin was born in Vienna to parents Emma Maria, née Laura (stage name Clarus), a soubrette on the operetta stages of Austria and Germany, and Emil Hadochadus Maria Artin, Austrian-born of mixed Austrian and Armenian descent. His Armenian last name was Artinian which was shortened to Artin. Several documents, including Emil's birth certificate, list the father's occupation as “opera singer” though others list it as “art dealer.” It seems at least plausible that he and Emma had ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tropical Semiring
In idempotent analysis, the tropical semiring is a semiring of extended real numbers with the operations of minimum (or maximum) and addition replacing the usual ("classical") operations of addition and multiplication, respectively. The tropical semiring has various applications (see tropical analysis), and forms the basis of tropical geometry. The name ''tropical'' is a reference to the Hungarian-born computer scientist Imre Simon, so named because he lived and worked in Brazil. Definition The ' (or or ) is the semiring (ℝ ∪ , ⊕, ⊗), with the operations: : x \oplus y = \min\, : x \otimes y = x + y. The operations ⊕ and ⊗ are referred to as ''tropical addition'' and ''tropical multiplication'' respectively. The unit for ⊕ is +∞, and the unit for ⊗ is 0. Similarly, the ' (or or or ) is the semiring (ℝ ∪ , ⊕, ⊗), with operations: : x \oplus y = \max\, : x \otimes y = x + y. The unit for ⊕ is −∞, and the unit for ⊗ is 0. The two semirings are ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Semiring
In abstract algebra, a semiring is an algebraic structure similar to a ring, but without the requirement that each element must have an additive inverse. The term rig is also used occasionally—this originated as a joke, suggesting that rigs are ri''n''gs without ''n''egative elements, similar to using '' rng'' to mean a r''i''ng without a multiplicative ''i''dentity. Tropical semirings are an active area of research, linking algebraic varieties with piecewise linear structures. Definition A semiring is a set R equipped with two binary operations \,+\, and \,\cdot,\, called addition and multiplication, such that:Lothaire (2005) p.211Sakarovitch (2009) pp.27–28 * (R, +) is a commutative monoid with identity element 0: ** (a + b) + c = a + (b + c) ** 0 + a = a = a + 0 ** a + b = b + a * (R, \,\cdot\,) is a monoid with identity element 1: ** (a \cdot b) \cdot c = a \cdot (b \cdot c) ** 1 \cdot a = a = a \cdot 1 * Multiplication left and right distributes over addition: * ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Extended Real Numbers
In mathematics, the affinely extended real number system is obtained from the real number system \R by adding two infinity elements: +\infty and -\infty, where the infinities are treated as actual numbers. It is useful in describing the algebra on infinities and the various limiting behaviors in calculus and mathematical analysis, especially in the theory of measure and integration. The affinely extended real number system is denoted \overline or \infty, +\infty/math> or It is the Dedekind–MacNeille completion of the real numbers. When the meaning is clear from context, the symbol +\infty is often written simply as Motivation Limits It is often useful to describe the behavior of a function f, as either the argument x or the function value f gets "infinitely large" in some sense. For example, consider the function f defined by :f(x) = \frac. The graph of this function has a horizontal asymptote at y = 0. Geometrically, when moving increasingly farther to the right along the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Non-Archimedean Ordered Field
In mathematics, a non-Archimedean ordered field is an ordered field that does not satisfy the Archimedean property. Examples are the Levi-Civita field, the hyperreal numbers, the surreal numbers, the Dehn field, and the field of rational functions with real coefficients with a suitable order. Definition The Archimedean property is a property of certain ordered fields such as the rational numbers or the real numbers, stating that every two elements are within an integer multiple of each other. If a field contains two positive elements for which this is not true, then must be an infinitesimal, greater than zero but smaller than any integer unit fraction. Therefore, the negation of the Archimedean property is equivalent to the existence of infinitesimals. Applications Hyperreal fields, non-Archimedean ordered fields containing the real numbers as a subfield, may be used to provide a mathematical foundation for nonstandard analysis. Max Dehn used the Dehn field, an example of a non ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Archimedean Group
In abstract algebra, a branch of mathematics, an Archimedean group is a linearly ordered group for which the Archimedean property holds: every two positive group elements are bounded by integer multiples of each other. The set R of real numbers together with the operation of addition and the usual ordering relation between pairs of numbers is an Archimedean group. By a result of Otto Hölder, every Archimedean group is isomorphic to a subgroup of this group. The name "Archimedean" comes from Otto Stolz, who named the Archimedean property after its appearance in the works of Archimedes. Definition An additive group consists of a set of elements, an associative addition operation that combines pairs of elements and returns a single element, an identity element (or zero element) whose sum with any other element is the other element, and an additive inverse operation such that the sum of any element and its inverse is zero. A group is a linearly ordered group when, in addition, its ele ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Leading-order Term
The leading-order terms (or corrections) within a mathematical equation, expression or model are the terms with the largest order of magnitude.J.K.Hunter, ''Asymptotic Analysis and Singular Perturbation Theory'', 2004. http://www.math.ucdavis.edu/~hunter/notes/asy.pdf The sizes of the different terms in the equation(s) will change as the variables change, and hence, which terms are leading-order may also change. A common and powerful way of simplifying and understanding a wide variety of complicated mathematical models is to investigate which terms are the largest (and therefore most important), for particular sizes of the variables and parameters, and analyse the behaviour produced by just these terms (regarding the other smaller terms as negligible). This gives the main behaviour – the true behaviour is only small deviations away from this. This main behaviour may be captured sufficiently well by just the strictly leading-order terms, or it may be decided that slightly smaller ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Germ (mathematics)
In mathematics, the notion of a germ of an object in/on a topological space is an equivalence class of that object and others of the same kind that captures their shared local properties. In particular, the objects in question are mostly functions (or maps) and subsets. In specific implementations of this idea, the functions or subsets in question will have some property, such as being analytic or smooth, but in general this is not needed (the functions in question need not even be continuous); it is however necessary that the space on/in which the object is defined is a topological space, in order that the word ''local'' has some meaning. Name The name is derived from ''cereal germ'' in a continuation of the sheaf metaphor, as a germ is (locally) the "heart" of a function, as it is for a grain. Formal definition Basic definition Given a point ''x'' of a topological space ''X'', and two maps f, g: X \to Y (where ''Y'' is any set), then f and g define the same germ at ''x'' if ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Analytic Geometry
In classical mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry. Analytic geometry is used in physics and engineering, and also in aviation, Aerospace engineering, rocketry, space science, and spaceflight. It is the foundation of most modern fields of geometry, including Algebraic geometry, algebraic, Differential geometry, differential, Discrete geometry, discrete and computational geometry. Usually the Cartesian coordinate system is applied to manipulate equations for planes, straight lines, and circles, often in two and sometimes three dimensions. Geometrically, one studies the Euclidean plane (two dimensions) and Euclidean space. As taught in school books, analytic geometry can be explained more simply: it is concerned with defining and representing geometric shapes in a numerical way and extracting numerical information from shapes' numerical defin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Metric Spaces
In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general setting for studying many of the concepts of mathematical analysis and geometry. The most familiar example of a metric space is 3-dimensional Euclidean space with its usual notion of distance. Other well-known examples are a sphere equipped with the angular distance and the hyperbolic plane. A metric may correspond to a metaphorical, rather than physical, notion of distance: for example, the set of 100-character Unicode strings can be equipped with the Hamming distance, which measures the number of characters that need to be changed to get from one string to another. Since they are very general, metric spaces are a tool used in many different branches of mathematics. Many types of mathematical objects have a natural notion of distance and t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |