Commutation Theorem For Traces
In mathematics, a commutation theorem for traces explicitly identifies the commutant of a specific von Neumann algebra acting on a Hilbert space in the presence of a Von Neumann algebra#Weights, states, and traces, trace. The first such result was proved by Francis Joseph Murray and John von Neumann in the 1930s and applies to the von Neumann algebra generated by a discrete group or by the dynamical system associated with a ergodic theory, measurable transformation preserving a probability measure. Another important application is in the theory of unitary representations of Haar measure, unimodular locally compact groups, where the theory has been applied to the regular representation and other closely related representations. In particular this framework led to an abstract version of the Plancherel theorem for unimodular locally compact groups due to Irving Segal and W. Forrest Stinespring, Forrest Stinespring and an abstract Plancherel theorem for spherical functions associate ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Plancherel Theorem For Spherical Functions
In mathematics, the Plancherel theorem for spherical functions is an important result in the group representation, representation theory of semisimple Lie groups, due in its final form to Harish-Chandra. It is a natural generalisation in non-commutative harmonic analysis of the Plancherel formula and Fourier inversion formula in the representation theory of the group of real numbers in classical harmonic analysis and has a similarly close interconnection with the theory of differential equations. It is the special case for zonal spherical functions of the general Plancherel theorem for semisimple Lie groups, also proved by Harish-Chandra. The Plancherel theorem gives the Spectral theory, eigenfunction expansion of radial functions for the Laplacian operator on the associated symmetric space ''X''; it also gives the direct integral, direct integral decomposition into irreducible representations of the regular representation on . In the case of hyperbolic space, these expansions were kn ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Probability Space
In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models the throwing of a die. A probability space consists of three elements:Stroock, D. W. (1999). Probability theory: an analytic view. Cambridge University Press. # A sample space, \Omega, which is the set of all possible outcomes. # An event space, which is a set of events \mathcal, an event being a set of outcomes in the sample space. # A probability function, which assigns each event in the event space a probability, which is a number between 0 and 1. In order to provide a sensible model of probability, these elements must satisfy a number of axioms, detailed in this article. In the example of the throw of a standard die, we would take the sample space to be \. For the event space, we could simply use the set of all subsets of the sample ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Countable
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements. In more technical terms, assuming the axiom of countable choice, a set is ''countable'' if its cardinality (its number of elements) is not greater than that of the natural numbers. A countable set that is not finite is said countably infinite. The concept is attributed to Georg Cantor, who proved the existence of uncountable sets, that is, sets that are not countable; for example the set of the real numbers. A note on terminology Although the terms "countable" and "countably infinite" as defined here are quite comm ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Inner Product Space
In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often denoted with angle brackets such as in \langle a, b \rangle. Inner products allow formal definitions of intuitive geometric notions, such as lengths, angles, and orthogonality (zero inner product) of vectors. Inner product spaces generalize Euclidean vector spaces, in which the inner product is the dot product or ''scalar product'' of Cartesian coordinates. Inner product spaces of infinite dimension are widely used in functional analysis. Inner product spaces over the field of complex numbers are sometimes referred to as unitary spaces. The first usage of the concept of a vector space with an inner product is due to Giuseppe Peano, in 1898. An inner product naturally induces an associated norm, (denoted , x, and , y, in the picture); so, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Finite Group
Finite is the opposite of infinite. It may refer to: * Finite number (other) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marked for person and/or tense or aspect * "Finite", a song by Sara Groves from the album '' Invisible Empires'' See also * * Nonfinite (other) Nonfinite is the opposite of finite * a nonfinite verb is a verb that is not capable of serving as the main verb in an independent clause * a non-finite clause In linguistics, a non-finite clause is a dependent or embedded clause that represen ... {{disambiguation fr:Fini it:Finito ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
State (functional Analysis)
In functional analysis, a state of an operator system is a positive linear functional of norm 1. States in functional analysis generalize the notion of density matrices in quantum mechanics, which represent quantum states, both . Density matrices in turn generalize state vectors, which only represent pure states. For ''M'' an operator system in a C*-algebra ''A'' with identity, the set of all states of'' ''M, sometimes denoted by S(''M''), is convex, weak-* closed in the Banach dual space ''M''*. Thus the set of all states of ''M'' with the weak-* topology forms a compact Hausdorff space, known as the state space of ''M'' . In the C*-algebraic formulation of quantum mechanics, states in this previous sense correspond to physical states, i.e. mappings from physical observables (self-adjoint elements of the C*-algebra) to their expected measurement outcome (real number). Jordan decomposition States can be viewed as noncommutative generalizations of probability measures. By Gel ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Matrix Coefficient
In mathematics, a matrix coefficient (or matrix element) is a function on a group of a special form, which depends on a linear representation of the group and additional data. Precisely, it is a function on a compact topological group ''G'' obtained by composing a representation of ''G'' on a vector space ''V'' with a linear map from the endomorphisms of ''V'' into ''V'' 's underlying field. It is also called a representative function. They arise naturally from finite-dimensional representations of ''G'' as the matrix-entry functions of the corresponding matrix representations. The Peter–Weyl theorem says that the matrix coefficients on ''G'' are dense in the Hilbert space of square-integrable functions on ''G''. Matrix coefficients of representations of Lie groups turned out to be intimately related with the theory of special functions, providing a unifying approach to large parts of this theory. Growth properties of matrix coefficients play a key role in the classification of i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Tomita–Takesaki Theory
In the theory of von Neumann algebras, a part of the mathematical field of functional analysis, Tomita–Takesaki theory is a method for constructing modular automorphisms of von Neumann algebras from the polar decomposition of a certain involution. It is essential for the theory of type III factors, and has led to a good structure theory for these previously intractable objects. The theory was introduced by , but his work was hard to follow and mostly unpublished, and little notice was taken of it until wrote an account of Tomita's theory. Modular automorphisms of a state Suppose that ''M'' is a von Neumann algebra acting on a Hilbert space ''H'', and Ω is a cyclic and separating vector of ''H'' of norm 1. (Cyclic means that ''MΩ'' is dense in ''H'', and separating means that the map from ''M'' to ''MΩ'' is injective.) We write \phi for the vector state \phi(x) = (x\Omega, \Omega) of ''M'', so that ''H'' is constructed from \phi using the Gelfand–Naimark–Segal construct ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rudolf Haag
Rudolf Haag (17 August 1922 – 5 January 2016) was a German theoretical physicist, who mainly dealt with fundamental questions of quantum field theory. He was one of the founders of the modern formulation of quantum field theory and he identified the formal structure in terms of the principle of locality and local observables. He also made important advances in the foundations of quantum statistical mechanics. Biography Rudolf Haag was born on 17 August 1922, in Tübingen, a university town in the middle of Baden-Württemberg. His family belonged to the cultured middle class. Haag's mother was the writer and politician Anna Haag. His father, Albert Haag, was a teacher of mathematics at a Gymnasium. After finishing high-school in 1939, he visited his sister in London shortly before the beginning of World War II. He was interned as an enemy alien and spent the war in a camp of German civilians in Manitoba. There he used his spare-time after the daily compulsory labour to study p ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Statistical Mechanics
Quantum statistical mechanics is statistical mechanics applied to quantum mechanical systems. In quantum mechanics a statistical ensemble (probability distribution over possible quantum states) is described by a density operator ''S'', which is a non-negative, self-adjoint, trace-class operator of trace 1 on the Hilbert space ''H'' describing the quantum system. This can be shown under various mathematical formalisms for quantum mechanics. One such formalism is provided by quantum logic. Expectation From classical probability theory, we know that the expectation of a random variable ''X'' is defined by its distribution D''X'' by : \mathbb(X) = \int_\mathbb \lambda \, d \, \operatorname_X(\lambda) assuming, of course, that the random variable is integrable or that the random variable is non-negative. Similarly, let ''A'' be an observable of a quantum mechanical system. ''A'' is given by a densely defined self-adjoint operator on ''H''. The spectral measure of ''A'' defined ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algebraic Quantum Field Theory
Algebraic quantum field theory (AQFT) is an application to local quantum physics of C*-algebra theory. Also referred to as the Haag–Kastler axiomatic framework for quantum field theory, because it was introduced by . The axioms are stated in terms of an algebra given for every open set in Minkowski space, and mappings between those. Haag–Kastler axioms Let \mathcal be the set of all open and bounded subsets of Minkowski space. An algebraic quantum field theory is defined via a net \_ of von Neumann algebras \mathcal(O) on a common Hilbert space \mathcal satisfying the following axioms: * ''Isotony'': O_1 \subset O_2 implies \mathcal(O_1) \subset \mathcal(O_2). * ''Causality'': If O_1 is space-like separated from O_2, then mathcal(O_1),\mathcal(O_2)0. * ''Poincaré covariance'': A strongly continuous unitary representation U(\mathcal) of the Poincaré group \mathcal on \mathcal exists such that \mathcal(gO) = U(g) \mathcal(O) U(g)^*, g \in \mathcal. * ''Spectrum condition' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |