HOME
*



picture info

Code Motion
In computer science, code motion, also known as code hoisting, code sinking, loop-invariant code motion, or code factoring, is a blanket term for any process that moves code within a program for performance or size benefits, and is a common optimization performed in most optimizing compilers. It can be difficult to differentiate between different types of code motion, due to the inconsistent meaning of the terms surrounding it. Uses Code motion has a variety of uses and benefits, many of which overlap each other in their implementation. Removing unused/useless operations Code Sinking, also known as lazy code motion, is a term for a technique that reduces wasted instructions by moving instructions to branches in which they are used: If an operation is executed before a branch, and only one of the branch paths use the result of that operation, then code sinking entails moving that operation into the branch where it will be used. This technique is a form of dead code eliminatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Science
Computer science is the study of computation, automation, and information. Computer science spans theoretical disciplines (such as algorithms, theory of computation, information theory, and automation) to Applied science, practical disciplines (including the design and implementation of Computer architecture, hardware and Computer programming, software). Computer science is generally considered an area of research, academic research and distinct from computer programming. Algorithms and data structures are central to computer science. The theory of computation concerns abstract models of computation and general classes of computational problem, problems that can be solved using them. The fields of cryptography and computer security involve studying the means for secure communication and for preventing Vulnerability (computing), security vulnerabilities. Computer graphics (computer science), Computer graphics and computational geometry address the generation of images. Progr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Itanium
Itanium ( ) is a discontinued family of 64-bit Intel microprocessors that implement the Intel Itanium architecture (formerly called IA-64). Launched in June 2001, Intel marketed the processors for enterprise servers and high-performance computing systems. The Itanium architecture originated at Hewlett-Packard (HP), and was later jointly developed by HP and Intel. Itanium-based systems were produced by HP/Hewlett Packard Enterprise (HPE) (the HPE Integrity Servers line) and several other manufacturers. In 2008, Itanium was the fourth-most deployed microprocessor architecture for enterprise-class systems, behind x86-64, Power ISA, and SPARC. In February 2017, Intel released the final generation, Kittson, to test customers, and in May began shipping in volume. It was used exclusively in mission-critical servers from Hewlett Packard Enterprise. In 2019, Intel announced that new orders for Itanium would be accepted until January 30, 2020, and shipments would cease by July 29, 2021 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Loop-invariant Code Motion
In computer programming, loop-invariant code consists of statements or expressions (in an imperative programming language) that can be moved outside the body of a loop without affecting the semantics of the program. Loop-invariant code motion (also called hoisting or scalar promotion) is a compiler optimization that performs this movement automatically. Example In the following code sample, two optimizations can be applied. int i = 0; while (i < n) Although the calculation x = y + z and x * x is loop-invariant, precautions must be taken before moving the code outside the loop. It is possible that the loop condition is false (for example, if n holds a negative value), and in such case, the loop body should not be executed at all. One way of guaranteeing correct behaviour is using a conditional branch outside of the loop. Evaluating the loop condition can have

Heap Allocation
In computer science, manual memory management refers to the usage of manual instructions by the programmer to identify and deallocate unused objects, or garbage. Up until the mid-1990s, the majority of programming languages used in industry supported manual memory management, though garbage collection has existed since 1959, when it was introduced with Lisp. Today, however, languages with garbage collection such as Java are increasingly popular and the languages Objective-C and Swift provide similar functionality through Automatic Reference Counting. The main manually managed languages still in widespread use today are C and C++ – see C dynamic memory allocation. Description Many programming languages use manual techniques to determine when to ''allocate'' a new object from the free store. C uses the malloc function; C++ and Java use the new operator; and many other languages (such as Python) allocate all objects from the free store. Determining when an object ought to be crea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


LuaJIT
LuaJIT is a tracing just in time compiler for the Lua programming language. History The LuaJIT project was started in 2005 by developer Mike Pall, released under the MIT open source license. The second major release of the compiler, 2.0.0, featured major performance increases. The latest release, 2.0.5 is released in 2017. Since then, the project is not currently maintained by developers other than contributors. Notable users * CERN, for their Methodical Accelerator Design 'next-generation' software for describing and simulating particle accelerators * OpenResty, a fork of nginx with Lua scripting * Kong, a web API gateway * Cloudflare, who use LuaJIT in their web application firewall service Performance LuaJIT is often the fastest Lua runtime. LuaJIT has also been named the fastest implementation of a dynamic programming language. LuaJIT is sometimes hailed as competitive to the performance of C++. LuaJIT includes a Foreign Function Interface compatible with C data ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

GNU Compiler Collection
The GNU Compiler Collection (GCC) is an optimizing compiler produced by the GNU Project supporting various programming languages, hardware architectures and operating systems. The Free Software Foundation (FSF) distributes GCC as free software under the GNU General Public License (GNU GPL). GCC is a key component of the GNU toolchain and the standard compiler for most projects related to GNU and the Linux kernel. With roughly 15 million lines of code in 2019, GCC is one of the biggest free programs in existence. It has played an important role in the growth of free software, as both a tool and an example. When it was first released in 1987 by Richard Stallman, GCC 1.0 was named the GNU C Compiler since it only handled the C programming language. It was extended to compile C++ in December of that year. Front ends were later developed for Objective-C, Objective-C++, Fortran, Ada, D and Go, among others. The OpenMP and OpenACC specifications are also supported in the C and C ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

LLVM
LLVM is a set of compiler and toolchain technologies that can be used to develop a front end for any programming language and a back end for any instruction set architecture. LLVM is designed around a language-independent intermediate representation (IR) that serves as a portable, high-level assembly language that can be optimized with a variety of transformations over multiple passes. LLVM is written in C++ and is designed for compile-time, link-time, run-time, and "idle-time" optimization. Originally implemented for C and C++, the language-agnostic design of LLVM has since spawned a wide variety of front ends: languages with compilers that use LLVM (or which do not directly use LLVM but can generate compiled programs as LLVM IR) include ActionScript, Ada, C#, Common Lisp, PicoLisp, Crystal, CUDA, D, Delphi, Dylan, Forth, Fortran, Free Basic, Free Pascal, Graphical G, Halide, Haskell, Java bytecode, Julia, Kotlin, Lua, Objective-C, OpenCL, PostgreSQL's SQL and PLpg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Loop Invariant Code Motion
Loop or LOOP may refer to: Brands and enterprises * Loop (mobile), a Bulgarian virtual network operator and co-founder of Loop Live * Loop, clothing, a company founded by Carlos Vasquez in the 1990s and worn by Digable Planets * Loop Mobile, an Indian mobile phone operator * Loop, a reusable container program announced in 2019 by TerraCycle Geography * Loop, Germany, a municipality in Schleswig-Holstein * Loop (Texarkana), a roadway loop around Texarkana, Arkansas, United States * Loop, Blair County, Pennsylvania, United States * Loop, Indiana County, Pennsylvania, United States * Loop, West Virginia, United States * Loop 101, a semi-beltway of the Phoenix Metropolitan Area * Loop 202, a semi-beltway of the Phoenix Metropolitan Area * Loop 303, a semi-beltway of the Phoenix Metropolitan Area * Chicago Loop, the downtown neighborhood of Chicago bounded by the elevated railway The Loop ** Loop Retail Historic District, a shopping district in the Chicago Loop * Delmar Loop, an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Branch Predictor
In computer architecture, a branch predictor is a digital circuit that tries to guess which way a branch (e.g., an if–then–else structure) will go before this is known definitively. The purpose of the branch predictor is to improve the flow in the instruction pipeline. Branch predictors play a critical role in achieving high performance in many modern pipelined microprocessor architectures such as x86. Two-way branching is usually implemented with a conditional jump instruction. A conditional jump can either be "taken" and jump to a different place in program memory, or it can be "not taken" and continue execution immediately after the conditional jump. It is not known for certain whether a conditional jump will be taken or not taken until the condition has been calculated and the conditional jump has passed the execution stage in the instruction pipeline (see fig. 1). Without branch prediction, the processor would have to wait until the conditional jump instruction has ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Out-of-order Execution
In computer engineering, out-of-order execution (or more formally dynamic execution) is a paradigm used in most high-performance central processing units to make use of instruction cycles that would otherwise be wasted. In this paradigm, a processor executes instructions in an order governed by the availability of input data and execution units, rather than by their original order in a program. In doing so, the processor can avoid being idle while waiting for the preceding instruction to complete and can, in the meantime, process the next instructions that are able to run immediately and independently. History Out-of-order execution is a restricted form of data flow computation, which was a major research area in computer architecture in the 1970s and early 1980s. The first machine to use out-of-order execution was the CDC 6600 (1964), designed by James E. Thornton, which uses a scoreboard to avoid conflicts. It permits an instruction to execute if its source operand (read) a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Optimization
Mathematical optimization (alternatively spelled ''optimisation'') or mathematical programming is the selection of a best element, with regard to some criterion, from some set of available alternatives. It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems of sorts arise in all quantitative disciplines from computer science and engineering to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries. In the more general approach, an optimization problem consists of maxima and minima, maximizing or minimizing a Function of a real variable, real function by systematically choosing Argument of a function, input values from within an allowed set and computing the Value (mathematics), value of the function. The generalization of optimization theory and techniques to other formulations constitutes a large area of applied mathematics. More generally, opti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Instruction Scheduling
In computer science, instruction scheduling is a compiler optimization used to improve instruction-level parallelism, which improves performance on machines with instruction pipelines. Put more simply, it tries to do the following without changing the meaning of the code: * Avoid pipeline stalls by rearranging the order of instructions. * Avoid illegal or semantically ambiguous operations (typically involving subtle instruction pipeline timing issues or non-interlocked resources). The pipeline stalls can be caused by structural hazards (processor resource limit), data hazards (output of one instruction needed by another instruction) and control hazards (branching). Data hazards Instruction scheduling is typically done on a single basic block. In order to determine whether rearranging the block's instructions in a certain way preserves the behavior of that block, we need the concept of a ''data dependency''. There are three types of dependencies, which also happen to be the thre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]