HOME





Closed Graph Theorem (functional Analysis)
In mathematics, particularly in functional analysis, the closed graph theorem is a result connecting the continuity of a linear operator to a topological property of their graph. Precisely, the theorem states that a linear operator between two Banach spaces is continuous if and only if the graph of the operator is closed (such an operator is called a closed linear operator; see also closed graph property). An important question in functional analysis is whether a given linear operator is continuous (or bounded). The closed graph theorem gives one answer to that question. Explanation Let T : X \to Y be a linear operator between Banach spaces (or more generally Fréchet spaces). Then the continuity of T means that Tx_i \to Tx for each convergent sequence x_i \to x. On the other hand, the closedness of the graph of T means that for each convergent sequence x_i \to x such that Tx_i \to y, we have y = Tx. Hence, the closed graph theorem says that in order to check the continuity ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (for example, Inner product space#Definition, inner product, Norm (mathematics)#Definition, norm, or Topological space#Definitions, topology) and the linear transformation, linear functions defined on these spaces and suitably respecting these structures. The historical roots of functional analysis lie in the study of function space, spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining, for example, continuous function, continuous or unitary operator, unitary operators between function spaces. This point of view turned out to be particularly useful for the study of differential equations, differential and integral equations. The usage of the word ''functional (mathematics), functional'' as a noun goes back to the calculus of v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schwarz Function
The Schwarz function of a curve in the complex plane is an analytic function which maps the points of the curve to their complex conjugates. It can be used to generalize the Schwarz reflection principle to reflection across arbitrary analytic curves, not just across the real axis. The Schwarz function exists for analytic curves. More precisely, for every non-singular, analytic Jordan arc \Gamma in the complex plane, there is an open neighborhood \Omega of \Gamma and a unique analytic function S on \Omega such that S(z) = \overline for every z \in \Gamma. The "Schwarz function" was named by Philip J. Davis and Henry O. Pollak (1958) in honor of Hermann Schwarz, who introduced the Schwarz reflection principle for analytic curves in 1870. However, the Schwarz function does not explicitly appear in Schwarz's works. Examples The unit circle is described by the equation , z, ^2 = 1, or \overline = 1/z. Thus, the Schwarz function of the unit circle is S(z) = 1/z. A more complicate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polish Space
In the mathematical discipline of general topology, a Polish space is a separable space, separable Completely metrizable space, completely metrizable topological space; that is, a space homeomorphic to a Complete space, complete metric space that has a countable Dense set, dense subset. Polish spaces are so named because they were first extensively studied by Polish topologists and logicians—Sierpiński, Kuratowski, Alfred Tarski, Tarski and others. However, Polish spaces are mostly studied today because they are the primary setting for descriptive set theory, including the study of Borel equivalence relations. Polish spaces are also a convenient setting for more advanced measure theory, in particular in probability theory. Common examples of Polish spaces are the real line, any Separable space, separable Banach space, the Cantor space, and the Baire space (set theory), Baire space. Additionally, some spaces that are not complete metric spaces in the usual metric may be Polish; ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Webbed Space
In mathematics, particularly in functional analysis, a webbed space is a topological vector space designed with the goal of allowing the results of the open mapping theorem and the closed graph theorem to hold for a wider class of linear maps whose codomains are webbed spaces. A space is called webbed if there exists a collection of sets, called a ''web'' that satisfies certain properties. Webs were first investigated by de Wilde. Web Let X be a Hausdorff locally convex topological vector space. A is a stratified collection of disks satisfying the following absorbency and convergence requirements. # Stratum 1: The first stratum must consist of a sequence D_, D_, D_, \ldots of disks in X such that their union \bigcup_ D_i absorbs X. # Stratum 2: For each disk D_i in the first stratum, there must exists a sequence D_, D_, D_, \ldots of disks in X such that for every D_i: D_ \subseteq \left(\tfrac\right) D_i \quad \text j and \cup_ D_ absorbs D_i. The sets \left(D_\right)_ wi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Baire Space
In mathematics, a topological space X is said to be a Baire space if countable unions of closed sets with empty interior also have empty interior. According to the Baire category theorem, compact Hausdorff spaces and complete metric spaces are examples of Baire spaces. The Baire category theorem combined with the properties of Baire spaces has numerous applications in topology, geometry, and analysis, in particular functional analysis. For more motivation and applications, see the article Baire category theorem. The current article focuses more on characterizations and basic properties of Baire spaces per se. Bourbaki introduced the term "Baire space" in honor of René Baire, who investigated the Baire category theorem in the context of Euclidean space \R^n in his 1899 thesis. Definition The definition that follows is based on the notions of meagre (or first category) set (namely, a set that is a countable union of sets whose closure has empty interior) and nonmeagre ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Infrabarreled Space
In functional analysis, a discipline within mathematics, a locally convex topological vector space (TVS) is said to be infrabarrelled (also spelled infra barreled) if every bounded barrel is a neighborhood of the origin. Similarly, quasibarrelled spaces are topological vector spaces (TVS) for which every bornivorous barrelled set in the space is a neighbourhood of the origin. Quasibarrelled spaces are studied because they are a weakening of the defining condition of barrelled spaces, for which a form of the Banach–Steinhaus theorem holds. Definition A subset B of a topological vector space (TVS) X is called bornivorous if it absorbs all bounded subsets of X; that is, if for each bounded subset S of X, there exists some scalar r such that S \subseteq r B. A barrelled set or a barrel in a TVS is a set which is convex, balanced, absorbing and closed. A quasibarrelled space is a TVS for which every bornivorous barrelled set in the space is a neighbourhood A nei ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metrizable Topological Vector Space
In functional analysis and related areas of mathematics, a metrizable (resp. pseudometrizable) topological vector space (TVS) is a TVS whose topology is induced by a metric (resp. pseudometric). An LM-space is an inductive limit of a sequence of locally convex metrizable TVS. Pseudometrics and metrics A pseudometric on a set X is a map d : X \times X \rarr \R satisfying the following properties: d(x, x) = 0 \text x \in X; Symmetry: d(x, y) = d(y, x) \text x, y \in X; Subadditivity: d(x, z) \leq d(x, y) + d(y, z) \text x, y, z \in X. A pseudometric is called a metric if it satisfies: Identity of indiscernibles: for all x, y \in X, if d(x, y) = 0 then x = y. Ultrapseudometric A pseudometric d on X is called a ultrapseudometric or a strong pseudometric if it satisfies: Strong/Ultrametric triangle inequality: d(x, z) \leq \max \ \text x, y, z \in X. Pseudometric space A pseudometric space is a pair (X, d) consisting of a set X and a pseudometric d on X such that X ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ultrabarrelled Space
In functional analysis and related areas of mathematics, an ultrabarrelled space is a topological vector spaces (TVS) for which every ultrabarrel is a neighbourhood of the origin. Definition A subset B_0 of a TVS X is called an ultrabarrel if it is a closed and balanced subset of X and if there exists a sequence \left(B_i\right)_^ of closed balanced and absorbing subsets of X such that B_ + B_ \subseteq B_i for all i = 0, 1, \ldots. In this case, \left(B_i\right)_^ is called a defining sequence for B_0. A TVS X is called ultrabarrelled if every ultrabarrel in X is a neighbourhood of the origin. Properties A locally convex ultrabarrelled space is a barrelled space. Every ultrabarrelled space is a quasi-ultrabarrelled space. Examples and sufficient conditions Complete and metrizable TVSs are ultrabarrelled. If X is a complete locally bounded non-locally convex TVS and if B_0 is a closed balanced and bounded neighborhood of the origin, then B_0 is an ultrabarrel th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hausdorff Space
In topology and related branches of mathematics, a Hausdorff space ( , ), T2 space or separated space, is a topological space where distinct points have disjoint neighbourhoods. Of the many separation axioms that can be imposed on a topological space, the "Hausdorff condition" (T2) is the most frequently used and discussed. It implies the uniqueness of limits of sequences, nets, and filters. Hausdorff spaces are named after Felix Hausdorff, one of the founders of topology. Hausdorff's original definition of a topological space (in 1914) included the Hausdorff condition as an axiom. Definitions Points x and y in a topological space X can be '' separated by neighbourhoods'' if there exists a neighbourhood U of x and a neighbourhood V of y such that U and V are disjoint (U\cap V=\varnothing). X is a Hausdorff space if any two distinct points in X are separated by neighbourhoods. This condition is the third separation axiom (after T0 and T1), which is why Hausdorff ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pseudometrizable
In mathematics, a pseudometric space is a generalization of a metric space in which the distance between two distinct points can be zero. Pseudometric spaces were introduced by Đuro Kurepa in 1934. In the same way as every normed space is a metric space, every seminormed space is a pseudometric space. Because of this analogy, the term semimetric space (which has a different meaning in topology) is sometimes used as a synonym, especially in functional analysis. When a topology is generated using a family of pseudometrics, the space is called a gauge space. Definition A pseudometric space (X,d) is a set X together with a non-negative real-valued function d : X \times X \longrightarrow \R_, called a , such that for every x, y, z \in X, #d(x,x) = 0. #''Symmetry'': d(x,y) = d(y,x) #''Subadditivity''/''Triangle inequality'': d(x,z) \leq d(x,y) + d(y,z) Unlike a metric space, points in a pseudometric space need not be distinguishable; that is, one may have d(x, y) = 0 for distinct ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metrizable Space
In topology and related areas of mathematics, a metrizable space is a topological space that is Homeomorphism, homeomorphic to a metric space. That is, a topological space (X, \tau) is said to be metrizable if there is a Metric (mathematics), metric d : X \times X \to [0, \infty) such that the topology induced by d is \tau. ''Metrization theorems'' are theorems that give sufficient conditions for a topological space to be metrizable. Properties Metrizable spaces inherit all topological properties from metric spaces. For example, they are Hausdorff space, Hausdorff paracompact spaces (and hence Normal space, normal and Tychonoff space, Tychonoff) and First-countable space, first-countable. However, some properties of the metric, such as Complete metric space, completeness, cannot be said to be inherited. This is also true of other structures linked to the metric. A metrizable uniform space, for example, may have a different set of Contraction mapping, contraction maps than a metri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


F-space
In functional analysis, an F-space is a vector space X over the real or complex numbers together with a metric d : X \times X \to \R such that # Scalar multiplication in X is continuous with respect to d and the standard metric on \R or \Complex. # Addition in X is continuous with respect to d. # The metric is translation-invariant; that is, d(x + a, y + a) = d(x, y) for all x, y, a \in X. # The metric space (X, d) is complete. The operation x \mapsto \, x\, := d(0, x) is called an F-norm, although in general an F-norm is not required to be homogeneous. By translation-invariance, the metric is recoverable from the F-norm. Thus, a real or complex F-space is equivalently a real or complex vector space equipped with a complete F-norm. Some authors use the term rather than , but usually the term "Fréchet space" is reserved for locally convex F-spaces. Some other authors use the term "F-space" as a synonym of "Fréchet space", by which they mean a locally convex complete metri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]