HOME
*





Cln3
G1/S-specific cyclin Cln3 is a protein that is encoded by the ''CLN3'' gene. The Cln3 protein is a budding yeast G1 cyclin that controls the timing of ''Start'', the point of commitment to a mitotic cell cycle. It is an upstream regulator of the other G1 cyclins, and it is thought to be the key regulator linking cell growth to cell cycle progression. It is a 65 kD, unstable protein; like other cyclins, it functions by binding and activating cyclin-dependent kinase (CDK). Cln3 in ''Start'' regulation Cln3 regulates ''Start'', the point at which budding yeast commit to the G1/S transition and thus a round of mitotic division. It was first identified as a gene controlling this process in the 1980s; research over the past few decades has provided a mechanistic understanding of its function. Identification of ''CLN3'' gene The ''CLN3'' gene was originally identified as the ''whi1-1'' allele in a screen for small size mutants of Saccharomyces cerevisiae (for Cln3's role in size ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cln3 As Size Sensor
G1/S-specific cyclin Cln3 is a protein that is encoded by the ''CLN3'' gene. The Cln3 protein is a budding yeast G1 cyclin that controls the timing of ''Start'', the point of commitment to a mitotic cell cycle. It is an upstream regulator of the other G1 cyclins, and it is thought to be the key regulator linking cell growth to cell cycle progression. It is a 65 kD, unstable protein; like other cyclins, it functions by binding and activating cyclin-dependent kinase (CDK). Cln3 in ''Start'' regulation Cln3 regulates ''Start'', the point at which budding yeast commit to the G1/S transition and thus a round of mitotic division. It was first identified as a gene controlling this process in the 1980s; research over the past few decades has provided a mechanistic understanding of its function. Identification of ''CLN3'' gene The ''CLN3'' gene was originally identified as the ''whi1-1'' allele in a screen for small size mutants of Saccharomyces cerevisiae (for Cln3's role in size c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cln3 And Cell Size Control
G1/S-specific cyclin Cln3 is a protein that is encoded by the ''CLN3'' gene. The Cln3 protein is a budding yeast G1 cyclin that controls the timing of ''Start'', the point of commitment to a mitotic cell cycle. It is an upstream regulator of the other G1 cyclins, and it is thought to be the key regulator linking cell growth to cell cycle progression. It is a 65 kD, unstable protein; like other cyclins, it functions by binding and activating cyclin-dependent kinase (CDK). Cln3 in ''Start'' regulation Cln3 regulates ''Start'', the point at which budding yeast commit to the G1/S transition and thus a round of mitotic division. It was first identified as a gene controlling this process in the 1980s; research over the past few decades has provided a mechanistic understanding of its function. Identification of ''CLN3'' gene The ''CLN3'' gene was originally identified as the ''whi1-1'' allele in a screen for small size mutants of Saccharomyces cerevisiae (for Cln3's role in size c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Whi5
Whi5 is a transcriptional regulator in the budding yeast cell cycle, notably in the G1 phase. It is an inhibitor of SBF, which is involved in the transcription of G1-specific genes. Cln3 promotes the disassociation of Whi5 from SBF, and its disassociation results in the transcription of genes needed to enter S phase. Roles in cell cycle progression Start of the checkpoints in the cell cycle, which allows the cell to enter S phase from late G1, and has an all-or-nothing response to stimulus from the cell. The checkpoint allows the cell to either enter G0 or G1 phase and cell conditions must be sufficient to enter the cell cycle; for example, if the cell is starving, or if there is nutrient depletion, then it will halt progression in the cell cycle. However, if the start checkpoint is satisfied then the cell can begin DNA replication and the cell will halt growing. In the cascade of events that leads to the transcription of G1-specific genes, Whi5 is involved in the regulation of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




G1 And G1/S Cyclins- Budding Yeast
Cln1, Cln2, and Cln3 are cyclin proteins expressed in the G1-phase of the cell cycle of budding yeast. Like other cyclins, they function by binding and activating cyclin-dependent kinase. They are responsible for initiating entry into a new mitotic cell cycle at ''Start''. As described below, Cln3 is the primary regulator of this process during normal yeast growth, with the other two G1 cyclins performing their function upon induction by Cln3. However, Cln1 and Cln2 are also directly regulated by pathways sensing extracellular conditions, including the mating pheremone pathway. Cln3 Cln3 is thought to be the main regulator linking cell growth to the cell cycle. This is because it is the most upstream regulator of ''Start'' and because, unlike other cyclins, concentration of Cln3 does not oscillate much with the cell cycle (see Cln3). Rather, Cln3 activity is thought to increase gradually throughout the cycle in response to cell growth.Morgan, David. The Cell Cycle: Principles of Ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Start Point (yeast)
The Start checkpoint is a major cell cycle checkpoint in yeast. The Start checkpoint ensures irreversible cell-cycle entry even if conditions later become unfavorable. The physiological factors that control passage through the Start checkpoint include external nutrient concentrations, presence of mating factor/ pheromone, forms of stress, and size control.Morgan, David. The Cell Cycle: Principles of Cell Control. New Science Press Ltd., London, 2007; pp 196-203. Early characterization of Start In an effort to study the ordered events of the cell cycle, Leland Hartwell ''et al.'' screened for and characterized temperature sensitive mutants, also known as cell division cycle mutants (cdc mutants), that display arrested cellular development at various stages of the cycle.Hartwell, L. H. "Genetic Control of the Cell-Division Cycle in Yeast, I. Detection of Mutants." Proceedings of the National Academy of Sciences 66.2 (1970): 352-59. Hartwell not only identified the mutant, cdc28, which ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

S-phase
S phase (Synthesis Phase) is the phase of the cell cycle in which DNA is replicated, occurring between G1 phase and G2 phase. Since accurate duplication of the genome is critical to successful cell division, the processes that occur during S-phase are tightly regulated and widely conserved. Regulation Entry into S-phase is controlled by the G1 restriction point (R), which commits cells to the remainder of the cell-cycle if there is adequate nutrients and growth signaling. This transition is essentially irreversible; after passing the restriction point, the cell will progress through S-phase even if environmental conditions become unfavorable. Accordingly, entry into S-phase is controlled by molecular pathways that facilitate a rapid, unidirectional shift in cell state. In yeast, for instance, cell growth induces accumulation of Cln3 cyclin, which complexes with the cyclin dependent kinase CDK2. The Cln3-CDK2 complex promotes transcription of S-phase genes by inactivating t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sic1
Sic1, a protein, is a stoichiometric inhibitor of Cdk1-Clb (B-type cyclins) complexes in the budding yeast ''Saccharomyces cerevisiae''. Because B-type cyclin-Cdk1 complexes are the drivers of S-phase initiation, Sic1 prevents premature S-phase entry. Multisite phosphorylation of Sic1 is thought to time Sic1 ubiquitination and destruction, and by extension, the timing of S-phase entry. Cell cycle control In the G1 phase of the cell cycle, Sic1 binds tightly to the Cdc28-Clb complex and inhibits it. Low Cdc28-Clb activity leads to the disassembly of the mitotic spindle, the assembly of the prereplicative complex and initiation of bud formation in yeast. At the START point in the yeast cell cycle, the G1- cyclins Cln3, Cln1 and Cln 2 activate Cdc28. The activated complex will phosphorylate Sic1 at multiple sites which leads to its degradation by the SCF complex. When Sic1 is degraded, the Cdc28-Clb complex is no longer inhibited and the cell can enter the S/M-phase. Thus Sic1 i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cyclin
Cyclin is a family of proteins that controls the progression of a cell through the cell cycle by activating cyclin-dependent kinase (CDK) enzymes or group of enzymes required for synthesis of cell cycle. Etymology Cyclins were originally discovered by R. Timothy Hunt in 1982 while studying the cell cycle of sea urchins. In an interview for "The Life Scientific" (aired on 13/12/2011) hosted by Jim Al-Khalili, R. Timothy Hunt explained that the name "cyclin" was originally named after his hobby cycling. It was only after the naming did its importance in the cell cycle become apparent. As it was appropriate the name stuck. R. Timothy Hunt: "By the way, the name cyclin, which I coined, was really a joke, it's because I liked cycling so much at the time, but they did come and go in the cell..." Function Cyclins were originally named because their concentration varies in a cyclical fashion during the cell cycle. (Note that the cyclins are now classified according to their conse ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cycloheximide
Cycloheximide is a naturally occurring fungicide produced by the bacterium ''Streptomyces griseus''. Cycloheximide exerts its effects by interfering with the translocation step in protein synthesis (movement of two tRNA molecules and mRNA in relation to the ribosome), thus blocking eukaryotic translational elongation. Cycloheximide is widely used in biomedical research to inhibit protein synthesis in eukaryotic cells studied ''in vitro'' (''i.e.'' outside of organisms). It is inexpensive and works rapidly. Its effects are rapidly reversed by simply removing it from the culture medium. Due to significant toxic side effects, including DNA damage, teratogenesis, and other reproductive effects (including birth defects and toxicity to sperm), cycloheximide is generally used only in ''in vitro'' research applications, and is not suitable for human use as a therapeutic compound. Although it has been used as a fungicide in agricultural applications, this application is now decreasing a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Glossary Of Gene Expression Terms
A glossary (from grc, γλῶσσα, ''glossa''; language, speech, wording) also known as a vocabulary or clavis, is an alphabetical list of terms in a particular domain of knowledge with the definitions for those terms. Traditionally, a glossary appears at the end of a book and includes terms within that book that are either newly introduced, uncommon, or specialized. While glossaries are most commonly associated with non-fiction books, in some cases, fiction novels may come with a glossary for unfamiliar terms. A bilingual glossary is a list of terms in one language defined in a second language or glossed by synonyms (or at least near-synonyms) in another language. In a general sense, a glossary contains explanations of concepts relevant to a certain field of study or action. In this sense, the term is related to the notion of ontology. Automatic methods have been also provided that transform a glossary into an ontology or a computational lexicon. History In medieval Eu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ribosomes
Ribosomes ( ) are macromolecular machines, found within all cells, that perform biological protein synthesis (mRNA translation). Ribosomes link amino acids together in the order specified by the codons of messenger RNA (mRNA) molecules to form polypeptide chains. Ribosomes consist of two major components: the small and large ribosomal subunits. Each subunit consists of one or more ribosomal RNA (rRNA) molecules and many ribosomal proteins (RPs or r-proteins). The ribosomes and associated molecules are also known as the ''translational apparatus''. Overview The sequence of DNA that encodes the sequence of the amino acids in a protein is transcribed into a messenger RNA chain. Ribosomes bind to messenger RNAs and use their sequences for determining the correct sequence of amino acids to generate a given protein. Amino acids are selected and carried to the ribosome by transfer RNA (tRNA) molecules, which enter the ribosome and bind to the messenger RNA chain via an anti-cod ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Translation (biology)
In molecular biology and genetics, translation is the process in which ribosomes in the cytoplasm or endoplasmic reticulum synthesize proteins after the process of transcription (biology), transcription of DNA to RNA in the cell's nucleus (cell), nucleus. The entire process is called gene expression. In translation, mRNA, messenger RNA (mRNA) is decoded in a ribosome, outside the nucleus, to produce a specific amino acid chain, or polypeptide. The polypeptide later protein folding, folds into an Activation energy, active protein and performs its functions in the Cell (biology), cell. The ribosome facilitates decoding by inducing the binding of Base pair, complementary tRNA anticodon sequences to mRNA codons. The tRNAs carry specific amino acids that are chained together into a polypeptide as the mRNA passes through and is "read" by the ribosome. Translation proceeds in three phases: # Initiation: The ribosome assembles around the target mRNA. The first tRNA is attached a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]