Clifford Bundle
In mathematics, a Clifford bundle is an algebra bundle whose fibers have the structure of a Clifford algebra and whose local trivializations respect the algebra structure. There is a natural Clifford bundle associated to any (pseudo) Riemannian manifold ''M'' which is called the Clifford bundle of ''M''. General construction Let ''V'' be a (real or complex) vector space together with a symmetric bilinear form . The Clifford algebra ''Cℓ''(''V'') is a natural ( unital associative) algebra generated by ''V'' subject only to the relation :v^2 = -\langle v,v\rangle for all ''v'' in ''V''. One can construct ''Cℓ''(''V'') as a quotient of the tensor algebra of ''V'' by the ideal generated by the above relation. Like other tensor operations, this construction can be carried out fiberwise on a smooth vector bundle. Let ''E'' be a smooth vector bundle over a smooth manifold ''M'', and let ''g'' be a smooth symmetric bilinear form on ''E''. The Clifford bundle of ''E'' is the fiber bundl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Smooth Manifold
In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One may then apply ideas from calculus while working within the individual charts, since each chart lies within a vector space to which the usual rules of calculus apply. If the charts are suitably compatible (namely, the transition from one chart to another is differentiable), then computations done in one chart are valid in any other differentiable chart. In formal terms, a differentiable manifold is a topological manifold with a globally defined differential structure. Any topological manifold can be given a differential structure locally by using the homeomorphisms in its atlas and the standard differential structure on a vector space. To induce a global differential structure on the local coordinate systems induced by the homeomorphisms, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Metric Tensor
In the mathematical field of differential geometry, a metric tensor (or simply metric) is an additional structure on a manifold (such as a surface) that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there. More precisely, a metric tensor at a point of is a bilinear form defined on the tangent space at (that is, a bilinear function that maps pairs of tangent vectors to real numbers), and a metric tensor on consists of a metric tensor at each point of that varies smoothly with . A metric tensor is ''positive-definite'' if for every nonzero vector . A manifold equipped with a positive-definite metric tensor is known as a Riemannian manifold. Such a metric tensor can be thought of as specifying ''infinitesimal'' distance on the manifold. On a Riemannian manifold , the length of a smooth curve between two points and can be defined by integration, and the distance between and can be defined as ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Orientability
In mathematics, orientability is a property of some topological spaces such as real vector spaces, Euclidean spaces, surfaces, and more generally manifolds that allows a consistent definition of "clockwise" and "counterclockwise". A space is orientable if such a consistent definition exists. In this case, there are two possible definitions, and a choice between them is an orientation of the space. Real vector spaces, Euclidean spaces, and spheres are orientable. A space is non-orientable if "clockwise" is changed into "counterclockwise" after running through some loops in it, and coming back to the starting point. This means that a geometric shape, such as , that moves continuously along such a loop is changed into its own mirror image . A Möbius strip is an example of a non-orientable space. Various equivalent formulations of orientability can be given, depending on the desired application and level of generality. Formulations applicable to general topological manifolds o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Superalgebra
In mathematics and theoretical physics, a superalgebra is a Z2-graded algebra. That is, it is an algebra over a commutative ring or field with a decomposition into "even" and "odd" pieces and a multiplication operator that respects the grading. The prefix ''super-'' comes from the theory of supersymmetry in theoretical physics. Superalgebras and their representations, supermodules, provide an algebraic framework for formulating supersymmetry. The study of such objects is sometimes called super linear algebra. Superalgebras also play an important role in related field of supergeometry where they enter into the definitions of graded manifolds, supermanifolds and superschemes. Formal definition Let ''K'' be a commutative ring. In most applications, ''K'' is a field of characteristic 0, such as R or C. A superalgebra over ''K'' is a ''K''-module ''A'' with a direct sum decomposition :A = A_0\oplus A_1 together with a bilinear multiplication ''A'' × ''A'' → ''A'' such t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Structure Group
In mathematics, and particularly topology, a fiber bundle (or, in Commonwealth English: fibre bundle) is a space that is a product space, but may have a different topological structure. Specifically, the similarity between a space E and a product space B \times F is defined using a continuous surjective map, \pi : E \to B, that in small regions of E behaves just like a projection from corresponding regions of B \times F to B. The map \pi, called the projection or submersion of the bundle, is regarded as part of the structure of the bundle. The space E is known as the total space of the fiber bundle, B as the base space, and F the fiber. In the ''trivial'' case, E is just B \times F, and the map \pi is just the projection from the product space to the first factor. This is called a trivial bundle. Examples of non-trivial fiber bundles include the Möbius strip and Klein bottle, as well as nontrivial covering spaces. Fiber bundles, such as the tangent bundle of a man ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Orthonormal Frame Bundle
In mathematics, a frame bundle is a principal fiber bundle F(''E'') associated to any vector bundle ''E''. The fiber of F(''E'') over a point ''x'' is the set of all ordered bases, or ''frames'', for ''E''''x''. The general linear group acts naturally on F(''E'') via a change of basis, giving the frame bundle the structure of a principal GL(''k'', R)-bundle (where ''k'' is the rank of ''E''). The frame bundle of a smooth manifold is the one associated to its tangent bundle. For this reason it is sometimes called the tangent frame bundle. Definition and construction Let ''E'' → ''X'' be a real vector bundle of rank ''k'' over a topological space ''X''. A frame at a point ''x'' ∈ ''X'' is an ordered basis for the vector space ''E''''x''. Equivalently, a frame can be viewed as a linear isomorphism :p : \mathbf^k \to E_x. The set of all frames at ''x'', denoted ''F''''x'', has a natural right action by the general linear group GL(''k'', R) of invertible ''k'' × ''k'' matrices: a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Automorphism
In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms of an object forms a group, called the automorphism group. It is, loosely speaking, the symmetry group of the object. Definition In the context of abstract algebra, a mathematical object is an algebraic structure such as a group, ring, or vector space. An automorphism is simply a bijective homomorphism of an object with itself. (The definition of a homomorphism depends on the type of algebraic structure; see, for example, group homomorphism, ring homomorphism, and linear operator.) The identity morphism (identity mapping) is called the trivial automorphism in some contexts. Respectively, other (non-identity) automorphisms are called nontrivial automorphisms. The exact definition of an automorphism depends on the type of "mathematical ob ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Orthogonal Group
In mathematics, the orthogonal group in dimension , denoted , is the Group (mathematics), group of isometry, distance-preserving transformations of a Euclidean space of dimension that preserve a fixed point, where the group operation is given by Function composition, composing transformations. The orthogonal group is sometimes called the general orthogonal group, by analogy with the general linear group. Equivalently, it is the group of orthogonal matrix, orthogonal matrices, where the group operation is given by matrix multiplication (an orthogonal matrix is a real matrix whose invertible matrix, inverse equals its transpose). The orthogonal group is an algebraic group and a Lie group. It is compact group, compact. The orthogonal group in dimension has two connected component (topology), connected components. The one that contains the identity element is a normal subgroup, called the special orthogonal group, and denoted . It consists of all orthogonal matrices of determinant ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Euclidean Metric
In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefore occasionally being called the Pythagorean distance. These names come from the ancient Greek mathematicians Euclid and Pythagoras, although Euclid did not represent distances as numbers, and the connection from the Pythagorean theorem to distance calculation was not made until the 18th century. The distance between two objects that are not points is usually defined to be the smallest distance among pairs of points from the two objects. Formulas are known for computing distances between different types of objects, such as the distance from a point to a line. In advanced mathematics, the concept of distance has been generalized to abstract metric spaces, and other distances than Euclidean have been studied. In some applications in statistics an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nondegenerate Form
In mathematics, specifically linear algebra, a degenerate bilinear form on a vector space ''V'' is a bilinear form such that the map from ''V'' to ''V''∗ (the dual space of ''V'' ) given by is not an isomorphism. An equivalent definition when ''V'' is finite-dimensional is that it has a non-trivial kernel: there exist some non-zero ''x'' in ''V'' such that :f(x,y)=0\, for all \,y \in V. Nondegenerate forms A nondegenerate or nonsingular form is a bilinear form that is not degenerate, meaning that v \mapsto (x \mapsto f(x,v)) is an isomorphism, or equivalently in finite dimensions, if and only if :f(x,y)=0 for all y \in V implies that x = 0. The most important examples of nondegenerate forms are inner products and symplectic forms. Symmetric nondegenerate forms are important generalizations of inner products, in that often all that is required is that the map V \to V^* be an isomorphism, not positivity. For example, a manifold with an inner product structure on its ta ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Definite Bilinear Form
In linguistics, definiteness is a semantic feature of noun phrases, distinguishing between referents or senses that are identifiable in a given context (definite noun phrases) and those which are not (indefinite noun phrases). The prototypical definite noun phrase picks out a unique, familiar, specific referent such as ''the sun'' or ''Australia'', as opposed to indefinite examples like ''an idea'' or ''some fish''. There is considerable variation in the expression of definiteness across languages, and some languages such as Japanese do not generally mark it so that the same expression could be definite in some contexts and indefinite in others. In other languages, such as English, it is usually marked by the selection of determiner (e.g., ''the'' vs ''a''). In still other languages, such as Danish, definiteness is marked morphologically. Definiteness as a grammatical category There are times when a grammatically marked definite NP is not in fact identifiable. For example, ''t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |