HOME
*





Chronometric Singularity
A chronometric singularity (also called a temporal or horological singularity) is a point at which time cannot be measured or described. An example involves a time at a coordinate singularity, e.g.a geographical pole. Since time on Earth is measured through longitudes, and no unique longitude exists at a pole, time is not defined uniquely at this point. There is a clear connection with coordinate singularities, as can be seen from this example. In relativity, similar singularities can be found in the case of Schwarzschild coordinates. Stephen Hawking once compared by a talk-show guest's question about "before the beginning of time" to asking "what's north of the north pole".What is Cosmology?
wiseGEEK.com. Accessed 15 Feb 2013. In a related discussion, he mentions this again

[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Singularity
In mathematics, a singularity is a point at which a given mathematical object is not defined, or a point where the mathematical object ceases to be well-behaved in some particular way, such as by lacking differentiability or analyticity. For example, the real function : f(x) = \frac has a singularity at x = 0, where the numerical value of the function approaches \pm\infty so the function is not defined. The absolute value function g(x) = , x, also has a singularity at x = 0, since it is not differentiable there. The algebraic curve defined by \left\ in the (x, y) coordinate system has a singularity (called a cusp) at (0, 0). For singularities in algebraic geometry, see singular point of an algebraic variety. For singularities in differential geometry, see singularity theory. Real analysis In real analysis, singularities are either discontinuities, or discontinuities of the derivative (sometimes also discontinuities of higher order derivatives). There are four kinds of discon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geographical Pole
A geographical pole or geographic pole is either of the two points on Earth where its axis of rotation intersects its surface. The North Pole lies in the Arctic Ocean while the South Pole is in Antarctica. North and South poles are also defined for other planets or satellites in the Solar System, with a North pole being on the same side of the invariable plane as Earth's North pole. Relative to Earth's surface, the geographic poles move by a few metres over periods of a few years. This is a combination of Chandler wobble, a free oscillation with a period of about 433 days; an annual motion responding to seasonal movements of air and water masses; and an irregular drift towards the 80th west meridian. As cartography requires exact and unchanging coordinates, the averaged locations of geographical poles are taken as fixed ''cartographic poles'' and become the points where the body's great circles of longitude intersect. See also * Earth's rotation * Polar motion * Poles of as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coordinate Singularity
A coordinate singularity occurs when an apparent singularity or discontinuity occurs in one coordinate frame that can be removed by choosing a different frame. An example is the apparent (longitudinal) singularity at the 90 degree latitude in spherical coordinates. An object moving due north (for example, along the line 0 degrees longitude) on the surface of a sphere will suddenly experience an instantaneous change in longitude at the pole (i.e., jumping from longitude 0 to longitude 180 degrees). In fact, longitude is not uniquely defined at the poles. This discontinuity, however, is only apparent; it is an artifact of the coordinate system chosen, which is singular at the poles. A different coordinate system would eliminate the apparent discontinuity, e.g. by replacing the latitude/longitude representation with an -vector representation. Stephen Hawking aptly summed this up, when once asking the question, "What lies north of the North Pole?".
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schwarzschild Coordinates
In the theory of Lorentzian manifolds, spherically symmetric spacetimes admit a family of ''nested round spheres''. In such a spacetime, a particularly important kind of coordinate chart is the Schwarzschild chart, a kind of polar spherical coordinate chart on a static and spherically symmetric spacetime, which is ''adapted'' to these nested round spheres. The defining characteristic of Schwarzschild chart is that the radial coordinate possesses a natural geometric interpretation in terms of the surface area and Gaussian curvature of each sphere. However, radial distances and angles are not accurately represented. These charts have many applications in metric theories of gravitation such as general relativity. They are most often used in static spherically symmetric spacetimes. In the case of general relativity, Birkhoff's theorem states that every ''isolated'' spherically symmetric vacuum or electrovacuum solution of the Einstein field equation is static, but this is certainl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coordinate Singularity
A coordinate singularity occurs when an apparent singularity or discontinuity occurs in one coordinate frame that can be removed by choosing a different frame. An example is the apparent (longitudinal) singularity at the 90 degree latitude in spherical coordinates. An object moving due north (for example, along the line 0 degrees longitude) on the surface of a sphere will suddenly experience an instantaneous change in longitude at the pole (i.e., jumping from longitude 0 to longitude 180 degrees). In fact, longitude is not uniquely defined at the poles. This discontinuity, however, is only apparent; it is an artifact of the coordinate system chosen, which is singular at the poles. A different coordinate system would eliminate the apparent discontinuity, e.g. by replacing the latitude/longitude representation with an -vector representation. Stephen Hawking aptly summed this up, when once asking the question, "What lies north of the North Pole?".
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Imaginary Time
Imaginary time is a mathematical representation of time which appears in some approaches to special relativity and quantum mechanics. It finds uses in connecting quantum mechanics with statistical mechanics and in certain cosmological theories. Mathematically, imaginary time is real time which has undergone a Wick rotation so that its coordinates are multiplied by the imaginary unit ''i''. Imaginary time is ''not'' imaginary in the sense that it is unreal or made-up (any more than, say, irrational numbers defy logic), it is simply expressed in terms of what mathematicians call imaginary numbers. Origins In mathematics, the imaginary unit i is the square root of -1, such that i^2 is defined to be -1. A number which is a direct multiple of i is known as an imaginary number. In certain physical theories, periods of time are multiplied by i in this way. Mathematically, an imaginary time period \tau may be obtained from real time t via a Wick rotation by \pi/2 in the complex plan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spacetime Singularity
A gravitational singularity, spacetime singularity or simply singularity is a condition in which gravity is so intense that spacetime itself breaks down catastrophically. As such, a singularity is by definition no longer part of the regular spacetime and cannot be determined by "where" or "when". Gravitational singularities exist at a junction between general relativity and quantum mechanics; therefore, the properties of the singularity cannot be described without an established theory of quantum gravity. Trying to find a complete and precise definition of singularities in the theory of general relativity, the current best theory of gravity, remains a difficult problem. A singularity in general relativity can be defined by the scalar invariant curvature becoming infinite or, better, by a geodesic being incomplete. Gravitational singularities are mainly considered in the context of general relativity, where density apparently becomes infinite at the center of a black hole, an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Time
Time is the continued sequence of existence and events that occurs in an apparently irreversible succession from the past, through the present, into the future. It is a component quantity of various measurements used to sequence events, to compare the duration of events or the intervals between them, and to quantify rates of change of quantities in material reality or in the conscious experience. Time is often referred to as a fourth dimension, along with three spatial dimensions. Time has long been an important subject of study in religion, philosophy, and science, but defining it in a manner applicable to all fields without circularity has consistently eluded scholars. Nevertheless, diverse fields such as business, industry, sports, the sciences, and the performing arts all incorporate some notion of time into their respective measuring systems. 108 pages. Time in physics is operationally defined as "what a clock reads". The physical nature of time is addre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geodesy
Geodesy ( ) is the Earth science of accurately measuring and understanding Earth's figure (geometric shape and size), orientation in space, and gravity. The field also incorporates studies of how these properties change over time and equivalent measurements for other planets (known as '' planetary geodesy''). Geodynamical phenomena, including crustal motion, tides and polar motion, can be studied by designing global and national control networks, applying space geodesy and terrestrial geodetic techniques and relying on datums and coordinate systems. The job title is geodesist or geodetic surveyor. History Definition The word geodesy comes from the Ancient Greek word ''geodaisia'' (literally, "division of Earth"). It is primarily concerned with positioning within the temporally varying gravitational field. Geodesy in the German-speaking world is divided into "higher geodesy" ( or ), which is concerned with measuring Earth on the global scale, and "practical geodes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]