Chen–Fox–Lyndon Theorem
In mathematics, a factorisation of a free monoid is a sequence of subsets of words with the property that every word in the free monoid can be written as a concatenation of elements drawn from the subsets. The Chen–Fox–Lyndon theorem states that the Lyndon words furnish a factorisation. The Schützenberger theorem relates the definition in terms of a multiplicative property to an additive property. Let ''A''* be the free monoid on an alphabet ''A''. Let ''X''''i'' be a sequence of subsets of ''A''* indexed by a totally ordered index set ''I''. A factorisation of a word ''w'' in ''A''* is an expression :w = x_ x_ \cdots x_ \ with x_ \in X_ and i_1 \ge i_2 \ge \ldots \ge i_n. Some authors reverse the order of the inequalities. Chen–Fox–Lyndon theorem A Lyndon word over a totally ordered alphabet ''A'' is a word that is lexicographically less than all its rotations.Lothaire (1997) p.64 The Chen–Fox–Lyndon theorem states that every string may be formed in a unique ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Linear Time
In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by the algorithm, supposing that each elementary operation takes a fixed amount of time to perform. Thus, the amount of time taken and the number of elementary operations performed by the algorithm are taken to be related by a constant factor. Since an algorithm's running time may vary among different inputs of the same size, one commonly considers the worst-case time complexity, which is the maximum amount of time required for inputs of a given size. Less common, and usually specified explicitly, is the average-case complexity, which is the average of the time taken on inputs of a given size (this makes sense because there are only a finite number of possible inputs of a given size). In both cases, the time complexity is generally expresse ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gian-Carlo Rota
Gian-Carlo Rota (April 27, 1932 – April 18, 1999) was an Italian-American mathematician and philosopher. He spent most of his career at the Massachusetts Institute of Technology, where he worked in combinatorics, functional analysis, probability theory, and phenomenology. Early life and education Rota was born in Vigevano, Italy. His father, Giovanni, an architect and prominent antifascist, was the brother of the mathematician Rosetta, who was the wife of the writer Ennio Flaiano. Gian-Carlo's family left Italy when he was 13 years old, initially going to Switzerland. Rota attended the Colegio Americano de Quito in Ecuador, and graduated with an A.B. in mathematics from Princeton University in 1953 after completing a senior thesis, titled "On the solubility of linear equations in topological vector spaces", under the supervision of William Feller. He then pursued graduate studies at Yale University, where he received a Ph.D. in mathematics in 1956 after completing a do ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Jean-Éric Pin
Jean-Éric Pin is a French mathematician and theoretical computer scientist known for his contributions to the algebraic automata theory and semigroup theory. He is a CNRS research director. Biography Pin earned his undergraduate degree from ENS Cachan in 1976 and his doctorate (Doctorat d'état) from the Pierre and Marie Curie University in 1981. Since 1988 he has been a CNRS research director at Paris Diderot University. In the years 1992–2006 he was a professor at École Polytechnique. Pin is a member of the Academia Europaea (2011) and an EATCS The European Association for Theoretical Computer Science (EATCS) is an international organization with a European focus, founded in 1972. Its aim is to facilitate the exchange of ideas and results among theoretical computer scientists as well as ... fellow (2014). In 2018, Pin became the first recipient of the Salomaa Prize in Automata Theory, Formal Languages, and Related Topics. References External links Personal page ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sesquipower
In mathematics, a sesquipower or Zimin word is a string over an alphabet with identical prefix and suffix. Sesquipowers are unavoidable patterns, in the sense that all sufficiently long strings contain one. Formal definition Formally, let ''A'' be an alphabet and ''A''∗ be the free monoid of finite strings over ''A''. Every non-empty word ''w'' in ''A''+ is a sesquipower of order 1. If ''u'' is a sesquipower of order ''n'' then any word ''w'' = ''uvu'' is a sesquipower of order ''n'' + 1.Lothaire (2011) p. 135 The ''degree'' of a non-empty word ''w'' is the largest integer ''d'' such that ''w'' is a sesquipower of order ''d''.Lothaire (2011) p. 136 Bi-ideal sequence A bi-ideal sequence is a sequence of words ''f''''i'' where ''f''1 is in ''A''+ and :f_ = f_i g_i f_i \ for some ''g''''i'' in ''A''∗ and ''i'' ≥ 1. The degree of a word ''w'' is thus the length of the longest bi-ideal sequence ending in ''w''. Unavoidabl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monoid
In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoids are semigroups with identity. Such algebraic structures occur in several branches of mathematics. The functions from a set into itself form a monoid with respect to function composition. More generally, in category theory, the morphisms of an object to itself form a monoid, and, conversely, a monoid may be viewed as a category with a single object. In computer science and computer programming, the set of strings built from a given set of characters is a free monoid. Transition monoids and syntactic monoids are used in describing finite-state machines. Trace monoids and history monoids provide a foundation for process calculi and concurrent computing. In theoretical computer science, the study of monoids is fundamental for automata ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
If And Only If
In logic and related fields such as mathematics and philosophy, "if and only if" (shortened as "iff") is a biconditional logical connective between statements, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of either one of the connected statements requires the truth of the other (i.e. either both statements are true, or both are false), though it is controversial whether the connective thus defined is properly rendered by the English "if and only if"—with its pre-existing meaning. For example, ''P if and only if Q'' means that ''P'' is true whenever ''Q'' is true, and the only case in which ''P'' is true is if ''Q'' is also true, whereas in the case of ''P if Q'', there could be other scenarios where ''P'' is true and ''Q'' is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Disjoint Sets
In mathematics, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set.. For example, and are ''disjoint sets,'' while and are not disjoint. A collection of two or more sets is called disjoint if any two distinct sets of the collection are disjoint. Generalizations This definition of disjoint sets can be extended to a family of sets \left(A_i\right)_: the family is pairwise disjoint, or mutually disjoint if A_i \cap A_j = \varnothing whenever i \neq j. Alternatively, some authors use the term disjoint to refer to this notion as well. For families the notion of pairwise disjoint or mutually disjoint is sometimes defined in a subtly different manner, in that repeated identical members are allowed: the family is pairwise disjoint if A_i \cap A_j = \varnothing whenever A_i \neq A_j (every two ''distinct'' sets in the family are disjoint).. For example, the collection of sets is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hall Word
In mathematics, in the areas of group theory and combinatorics, Hall words provide a unique monoid factorisation of the free monoid. They are also totally ordered, and thus provide a total order on the monoid. This is analogous to the better-known case of Lyndon words; in fact, the Lyndon words are a special case, and almost all properties possessed by Lyndon words carry over to Hall words. Hall words are in one-to-one correspondence with Hall trees. These are binary trees; taken together, they form the Hall set. This set is a particular totally ordered subset of a free non-associative algebra, that is, a free magma. In this form, the Hall trees provide a basis for free Lie algebras, and can be used to perform the commutations required by the Poincaré–Birkhoff–Witt theorem used in the construction of a universal enveloping algebra. As such, this generalizes the same process when done with the Lyndon words. Hall trees can also be used to give a total order to the elements of a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hall Set
In mathematics, in the areas of group theory and combinatorics, Hall words provide a unique monoid factorisation of the free monoid. They are also totally ordered, and thus provide a total order on the monoid. This is analogous to the better-known case of Lyndon words; in fact, the Lyndon words are a special case, and almost all properties possessed by Lyndon words carry over to Hall words. Hall words are in one-to-one correspondence with Hall trees. These are binary trees; taken together, they form the Hall set. This set is a particular totally ordered subset of a free non-associative algebra, that is, a free magma. In this form, the Hall trees provide a basis for free Lie algebras, and can be used to perform the commutations required by the Poincaré–Birkhoff–Witt theorem used in the construction of a universal enveloping algebra. As such, this generalizes the same process when done with the Lyndon words. Hall trees can also be used to give a total order to the elements of a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Singleton Set
In mathematics, a singleton, also known as a unit set or one-point set, is a set with exactly one element. For example, the set \ is a singleton whose single element is 0. Properties Within the framework of Zermelo–Fraenkel set theory, the axiom of regularity guarantees that no set is an element of itself. This implies that a singleton is necessarily distinct from the element it contains, thus 1 and are not the same thing, and the empty set is distinct from the set containing only the empty set. A set such as \ is a singleton as it contains a single element (which itself is a set, however, not a singleton). A set is a singleton if and only if its cardinality is . In von Neumann's set-theoretic construction of the natural numbers, the number 1 is ''defined'' as the singleton \. In axiomatic set theory, the existence of singletons is a consequence of the axiom of pairing: for any set ''A'', the axiom applied to ''A'' and ''A'' asserts the existence of \, which is the same ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Free Monoid
In abstract algebra, the free monoid on a set is the monoid whose elements are all the finite sequences (or strings) of zero or more elements from that set, with string concatenation as the monoid operation and with the unique sequence of zero elements, often called the empty string and denoted by ε or λ, as the identity element. The free monoid on a set ''A'' is usually denoted ''A''∗. The free semigroup on ''A'' is the subsemigroup of ''A''∗ containing all elements except the empty string. It is usually denoted ''A''+./ref> More generally, an abstract monoid (or semigroup) ''S'' is described as free if it is isomorphic to the free monoid (or semigroup) on some set. As the name implies, free monoids and semigroups are those objects which satisfy the usual universal property defining free objects, in the respective categories of monoids and semigroups. It follows that every monoid (or semigroup) arises as a homomorphic image of a free monoid (or semigroup). The study ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |