HOME
*





Cellular Algebra
In abstract algebra, a cellular algebra is a finite-dimensional associative algebra ''A'' with a distinguished cellular basis which is particularly well-adapted to studying the representation theory of ''A''. History The cellular algebras discussed in this article were introduced in a 1996 paper of Graham and Lehrer. However, the terminology had previously been used by Weisfeiler and Lehman in the Soviet Union in the 1960s, to describe what are also known as coherent algebras. Definitions Let R be a fixed commutative ring with unit. In most applications this is a field, but this is not needed for the definitions. Let also A be an R-algebra. The concrete definition A ''cell datum'' for A is a tuple (\Lambda,i,M,C) consisting of :* A finite partially ordered set \Lambda. :* A R-linear anti-automorphism i:A\to A with i^2 = \operatorname_A. :* For every \lambda\in\Lambda a non-empty finite set M(\lambda) of indices. :* An injective map :::C: \dot_ M(\lambda)\times M(\lam ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Abstract Algebra
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term ''abstract algebra'' was coined in the early 20th century to distinguish this area of study from older parts of algebra, and more specifically from elementary algebra, the use of variables to represent numbers in computation and reasoning. Algebraic structures, with their associated homomorphisms, form mathematical categories. Category theory is a formalism that allows a unified way for expressing properties and constructions that are similar for various structures. Universal algebra is a related subject that studies types of algebraic structures as single objects. For example, the structure of groups is a single object in universal algebra, which is called the ''variety of groups''. History Before the nineteenth century, algebra meant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebra Over A Field
In mathematics, an algebra over a field (often simply called an algebra) is a vector space equipped with a bilinear product. Thus, an algebra is an algebraic structure consisting of a set together with operations of multiplication and addition and scalar multiplication by elements of a field and satisfying the axioms implied by "vector space" and "bilinear". The multiplication operation in an algebra may or may not be associative, leading to the notions of associative algebras and non-associative algebras. Given an integer ''n'', the ring of real square matrices of order ''n'' is an example of an associative algebra over the field of real numbers under matrix addition and matrix multiplication since matrix multiplication is associative. Three-dimensional Euclidean space with multiplication given by the vector cross product is an example of a nonassociative algebra over the field of real numbers since the vector cross product is nonassociative, satisfying the Jacobi identity i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Weyl Group
In mathematics, in particular the theory of Lie algebras, the Weyl group (named after Hermann Weyl) of a root system Φ is a subgroup of the isometry group of that root system. Specifically, it is the subgroup which is generated by reflections through the hyperplanes orthogonal to the roots, and as such is a finite reflection group. In fact it turns out that ''most'' finite reflection groups are Weyl groups. Abstractly, Weyl groups are finite Coxeter groups, and are important examples of these. The Weyl group of a semisimple Lie group, a semisimple Lie algebra, a semisimple linear algebraic group, etc. is the Weyl group of the root system of that group or algebra. Definition and examples Let \Phi be a root system in a Euclidean space V. For each root \alpha\in\Phi, let s_\alpha denote the reflection about the hyperplane perpendicular to \alpha, which is given explicitly as :s_\alpha(v)=v-2\frac\alpha, where (\cdot,\cdot) is the inner product on V. The Weyl group W of \Phi is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Group
Finite is the opposite of infinite. It may refer to: * Finite number (other) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marked for person and/or tense or aspect * "Finite", a song by Sara Groves from the album '' Invisible Empires'' See also * * Nonfinite (other) Nonfinite is the opposite of finite * a nonfinite verb is a verb that is not capable of serving as the main verb in an independent clause * a non-finite clause In linguistics, a non-finite clause is a dependent or embedded clause that represen ... {{disambiguation fr:Fini it:Finito ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetric Group
In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group \mathrm_n defined over a finite set of n symbols consists of the permutations that can be performed on the n symbols. Since there are n! (n factorial) such permutation operations, the order (number of elements) of the symmetric group \mathrm_n is n!. Although symmetric groups can be defined on infinite sets, this article focuses on the finite symmetric groups: their applications, their elements, their conjugacy classes, a finite presentation, their subgroups, their automorphism groups, and their representation theory. For the remainder of this article, "symmetric group" will mean a symmetric group on a finite set. The symmetric group is important to diverse areas of mathematics such as Galois theory, invariant theory, the representatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Group Ring
In algebra, a group ring is a free module and at the same time a ring, constructed in a natural way from any given ring and any given group. As a free module, its ring of scalars is the given ring, and its basis is the set of elements of the given group. As a ring, its addition law is that of the free module and its multiplication extends "by linearity" the given group law on the basis. Less formally, a group ring is a generalization of a given group, by attaching to each element of the group a "weighting factor" from a given ring. If the ring is commutative then the group ring is also referred to as a group algebra, for it is indeed an algebra over the given ring. A group algebra over a field has a further structure of a Hopf algebra; in this case, it is thus called a group Hopf algebra. The apparatus of group rings is especially useful in the theory of group representations. Definition Let ''G'' be a group, written multiplicatively, and let ''R'' be a ring. The group ring of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language of mathematics, the set of integers is often denoted by the boldface or blackboard bold \mathbb. The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the natural numbers, \mathbb is countably infinite. An integer may be regarded as a real number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , and  are not. The integers form the smallest group and the smallest ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers to distinguish them from the more general algebraic integers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Iwahori–Hecke Algebra
In mathematics, the Iwahori–Hecke algebra, or Hecke algebra, named for Erich Hecke and Nagayoshi Iwahori, is a deformation of the group algebra of a Coxeter group. Hecke algebras are quotients of the group rings of Artin braid groups. This connection found a spectacular application in Vaughan Jones' construction of new invariants of knots. Representations of Hecke algebras led to discovery of quantum groups by Michio Jimbo. Michael Freedman proposed Hecke algebras as a foundation for topological quantum computation. Hecke algebras of Coxeter groups Start with the following data: * (''W'', ''S'') is a Coxeter system with the Coxeter matrix ''M'' = (''m''''st''), * ''R'' is a commutative ring with identity. * is a family of units of ''R'' such that ''qs'' = ''qt'' whenever ''s'' and ''t'' are conjugate in ''W'' * ''A'' is the ring of Laurent polynomials over Z with indeterminates ''qs'' (and the above restriction that ''qs'' = ''qt'' whenever ''s'' and ''t'' are conjugate ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Poset
In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a Set (mathematics), set. A poset consists of a set together with a binary relation indicating that, for certain pairs of elements in the set, one of the elements precedes the other in the ordering. The relation itself is called a "partial order." The word ''partial'' in the names "partial order" and "partially ordered set" is used as an indication that not every pair of elements needs to be comparable. That is, there may be pairs of elements for which neither element precedes the other in the poset. Partial orders thus generalize total orders, in which every pair is comparable. Informal definition A partial order defines a notion of Comparability, comparison. Two elements ''x'' and ''y'' may stand in any of four mutually exclusive relationships to each other: either ''x''  ''y'', ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matrix Unit
In linear algebra, a matrix unit is a matrix (mathematics), matrix with only one nonzero entry with value 1. The matrix unit with a 1 in the ''i''th row and ''j''th column is denoted as E_. For example, the 3 by 3 matrix unit with ''i'' = 1 and ''j'' = 2 is E_ = \begin0 & 1 & 0 \\0 & 0 & 0 \\ 0 & 0 & 0 \endA vector unit is a standard unit vector. A single-entry matrix generalizes the matrix unit for matrices with only one nonzero entry of any value, not necessarily of value 1. Properties The set of ''m'' by ''n'' matrix units is a basis (linear algebra), basis of the space of ''m'' by ''n'' matrices. The product of two matrix units of the same square shape n \times n satisfies the relation E_E_ = \delta_E_, where \delta_ is the Kronecker delta. The group of scalar matrix, scalar ''n''-by-''n'' matrices over a ring ''R'' is the centralizer of the subset of ''n''-by-''n'' matrix units in the set of ''n''-by-''n'' matrices over ''R''. When multiplied by another matrix, it isol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topological Ordering
In computer science, a topological sort or topological ordering of a directed graph is a linear ordering of its vertices such that for every directed edge ''uv'' from vertex ''u'' to vertex ''v'', ''u'' comes before ''v'' in the ordering. For instance, the vertices of the graph may represent tasks to be performed, and the edges may represent constraints that one task must be performed before another; in this application, a topological ordering is just a valid sequence for the tasks. Precisely, a topological sort is a graph traversal in which each node ''v'' is visited only after all its dependencies are visited''.'' A topological ordering is possible if and only if the graph has no directed cycles, that is, if it is a directed acyclic graph (DAG). Any DAG has at least one topological ordering, and algorithms are known for constructing a topological ordering of any DAG in linear time. Topological sorting has many applications especially in ranking problems such as feedback arc set. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Direct Sum
The direct sum is an operation between structures in abstract algebra, a branch of mathematics. It is defined differently, but analogously, for different kinds of structures. To see how the direct sum is used in abstract algebra, consider a more elementary kind of structure, the abelian group. The direct sum of two abelian groups A and B is another abelian group A\oplus B consisting of the ordered pairs (a,b) where a \in A and b \in B. To add ordered pairs, we define the sum (a, b) + (c, d) to be (a + c, b + d); in other words addition is defined coordinate-wise. For example, the direct sum \Reals \oplus \Reals , where \Reals is real coordinate space, is the Cartesian plane, \R ^2 . A similar process can be used to form the direct sum of two vector spaces or two modules. We can also form direct sums with any finite number of summands, for example A \oplus B \oplus C, provided A, B, and C are the same kinds of algebraic structures (e.g., all abelian groups, or all vector spa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]