HOME
*





Catoptric Tessellation
Catoptrics (from grc-gre, κατοπτρικός ''katoptrikós'', "specular", from grc-gre, κάτοπτρον ''katoptron'' "mirror") deals with the phenomena of reflected light and image-forming optical systems using mirrors. A catoptric system is also called a ''catopter'' (''catoptre''). Ancient texts ''Catoptrics'' is the title of two texts from ancient Greece: *The Pseudo-Euclidean ''Catoptrics''. This book is attributed to Euclid, although the contents are a mixture of work dating from Euclid's time together with work which dates to the Roman period., accessed 31 January 2013 It has been argued that the book may have been compiled by the 4th century mathematician Theon of Alexandria. The book covers the mathematical theory of mirrors, particularly the images formed by plane and spherical concave mirrors. *Hero's ''Catoptrics''. Written by Hero of Alexandria, this work concerns the practical application of mirrors for visual effects. In the Middle Ages, this work was fal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Telescope Newton Schema
A telescope is a device used to observe distant objects by their emission, absorption, or reflection of electromagnetic radiation. Originally meaning only an optical instrument using lenses, curved mirrors, or a combination of both to observe distant objects, the word ''telescope'' now refers to a wide range of instruments capable of detecting different regions of the electromagnetic spectrum, and in some cases other types of detectors. The first known practical telescopes were refracting telescopes with glass lenses and were invented in the Netherlands at the beginning of the 17th century. They were used for both terrestrial applications and astronomy. The reflecting telescope, which uses mirrors to collect and focus light, was invented within a few decades of the first refracting telescope. In the 20th century, many new types of telescopes were invented, including radio telescopes in the 1930s and infrared telescopes in the 1960s. Etymology The word ''telescope'' was coi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Angle Of Incidence (optics)
The angle of incidence, in geometric optics, is the angle between a ray incident on a surface and the line perpendicular (at 90 degree angle) to the surface at the point of incidence, called the normal. The ray can be formed by any waves, such as optical, acoustic, microwave, and X-ray. In the figure below, the line representing a ray makes an angle θ with the normal (dotted line). The angle of incidence at which light is first totally internally reflected is known as the critical angle. The angle of reflection and angle of refraction are other angles related to beams. In computer graphics and geography, the angle of incidence is also known as the illumination angle of a surface with a light source, such as the Earth's surface and the Sun. It can also be equivalently described as the angle between the tangent plane of the surface and another plane at right angles to the light rays. This means that the illumination angle of a certain point on Earth's surface is 0° if the Sun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dioptrics
Dioptrics is the branch of optics dealing with refraction, similarly the branch dealing with mirrors is known as catoptrics. Dioptrics is the study of the refraction of light, especially by lenses. Telescopes that create their image with an objective that is a convex lens ( refractors) are said to be "dioptric" telescopes. An early study of dioptrics was conducted by Ptolemy in relationship to the human eye as well as refraction in media such as water. The understanding of the principles of dioptrics was further expanded by Alhazen, considered the father of modern optics. See also * Diopter/ Dioptre (unit of measurement) * Dioptrice (work by Johannes Kepler) * Catoptrics (study of and optical systems utilizing reflection) * Catadioptrics (study of and optical systems utilizing reflection and refraction) * Optical telescope * List of telescope types * Image-forming optical system In optics, an image-forming optical system is a system capable of being used for imaging. The dia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dioptrics
Dioptrics is the branch of optics dealing with refraction, similarly the branch dealing with mirrors is known as catoptrics. Dioptrics is the study of the refraction of light, especially by lenses. Telescopes that create their image with an objective that is a convex lens ( refractors) are said to be "dioptric" telescopes. An early study of dioptrics was conducted by Ptolemy in relationship to the human eye as well as refraction in media such as water. The understanding of the principles of dioptrics was further expanded by Alhazen, considered the father of modern optics. See also * Diopter/ Dioptre (unit of measurement) * Dioptrice (work by Johannes Kepler) * Catoptrics (study of and optical systems utilizing reflection) * Catadioptrics (study of and optical systems utilizing reflection and refraction) * Optical telescope * List of telescope types * Image-forming optical system In optics, an image-forming optical system is a system capable of being used for imaging. The dia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Objective (optics)
In optical engineering, the objective is the optical element that gathers light from the object being observed and focuses the light rays to produce a real image. Objectives can be a single lens or mirror, or combinations of several optical elements. They are used in microscopes, binoculars, telescopes, cameras, slide projectors, CD players and many other optical instruments. Objectives are also called object lenses, object glasses, or objective glasses. Microscope objectives The objective lens of a microscope is the one at the bottom near the sample. At its simplest, it is a very high-powered magnifying glass, with very short focal length. This is brought very close to the specimen being examined so that the light from the specimen comes to a focus inside the microscope tube. The objective itself is usually a cylinder containing one or more lenses that are typically made of glass; its function is to collect light from the sample. Magnification One of the most important prope ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Chromatic Aberration
In optics, chromatic aberration (CA), also called chromatic distortion and spherochromatism, is a failure of a lens to focus all colors to the same point. It is caused by dispersion: the refractive index of the lens elements varies with the wavelength of light. The refractive index of most transparent materials decreases with increasing wavelength. Since the focal length of a lens depends on the refractive index, this variation in refractive index affects focusing. Chromatic aberration manifests itself as "fringes" of color along boundaries that separate dark and bright parts of the image. Types There are two types of chromatic aberration: ''axial'' (''longitudinal''), and ''transverse'' (''lateral''). Axial aberration occurs when different wavelengths of light are focused at different distances from the lens (focus ''shift''). Longitudinal aberration is typical at long focal lengths. Transverse aberration occurs when different wavelengths are focused at different positions i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isaac Newton
Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a "natural philosopher"), widely recognised as one of the greatest mathematicians and physicists and among the most influential scientists of all time. He was a key figure in the philosophical revolution known as the Enlightenment. His book (''Mathematical Principles of Natural Philosophy''), first published in 1687, established classical mechanics. Newton also made seminal contributions to optics, and shares credit with German mathematician Gottfried Wilhelm Leibniz for developing infinitesimal calculus. In the , Newton formulated the laws of motion and universal gravitation that formed the dominant scientific viewpoint for centuries until it was superseded by the theory of relativity. Newton used his mathematical description of gravity to derive Kepler's laws of planetary motion, account for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Newtonian Reflector
The Newtonian telescope, also called the Newtonian reflector or just a Newtonian, is a type of reflecting telescope invented by the English scientist Sir Isaac Newton, using a concave primary mirror and a flat diagonal secondary mirror. Newton's first reflecting telescope was completed in 1668 and is the earliest known functional reflecting telescope. The Newtonian telescope's simple design has made it very popular with amateur telescope makers.


Description

A Newtonian telescope is composed of a primary mirror or objective, usually parabolic in shape, and a smaller mirror called the "secondary" which is flat. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Telescope
A telescope is a device used to observe distant objects by their emission, absorption, or reflection of electromagnetic radiation. Originally meaning only an optical instrument using lenses, curved mirrors, or a combination of both to observe distant objects, the word ''telescope'' now refers to a wide range of instruments capable of detecting different regions of the electromagnetic spectrum, and in some cases other types of detectors. The first known practical telescopes were refracting telescopes with glass lenses and were invented in the Netherlands at the beginning of the 17th century. They were used for both terrestrial applications and astronomy. The reflecting telescope, which uses mirrors to collect and focus light, was invented within a few decades of the first refracting telescope. In the 20th century, many new types of telescopes were invented, including radio telescopes in the 1930s and infrared telescopes in the 1960s. Etymology The word ''telescope'' was coin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Kamal Al-Din Al-Farisi
Kamal may refer to: *Kamal (name), a male given name and surname with multiple origins *Kamal (navigation), a navigational instrument for measuring latitude *Kamal, Jhapa, a rural municipality in Nepal *Alfa Romeo Kamal, an SUV by Alfa Romeo *Operation Kamala, name given to corrupt political practices by BJP in India See also *Kamala (other) *Kamahl Kandiah Kamalesvaran ( ta, கந்தையா கமலேஸ்வரன்; born 13 November 1934), better known by his stage name Kamahl, is a Malaysian-born Australian singer and recording artist. His highest charting Australian single, ...
, Australian Malaysian singer {{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Averroes
Ibn Rushd ( ar, ; full name in ; 14 April 112611 December 1198), often Latinized as Averroes ( ), was an Andalusian polymath and jurist who wrote about many subjects, including philosophy, theology, medicine, astronomy, physics, psychology, mathematics, Islamic jurisprudence and law, and linguistics. The author of more than 100 books and treatises, his philosophical works include numerous commentaries on Aristotle, for which he was known in the Western world as ''The Commentator'' and ''Father of Rationalism''. Ibn Rushd also served as a chief judge and a court physician for the Almohad Caliphate. Averroes was a strong proponent of Aristotelianism; he attempted to restore what he considered the original teachings of Aristotle and opposed the Neoplatonist tendencies of earlier Muslim thinkers, such as Al-Farabi and Avicenna. He also defended the pursuit of philosophy against criticism by Ashari theologians such as Al-Ghazali. Averroes argued that philosophy was permissi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Alhazen's Problem
Alhazen's problem, also known as Alhazen's billiard problem, is a mathematical problem in geometrical optics first formulated by Ptolemy in 150 AD. It is named for the 11th-century Arab mathematician Alhazen (''Ibn al-Haytham'') who presented a geometric solution in his '' Book of Optics''. The algebraic solution involves quartic equations and was found in 1965 by . Geometric formulation The problem comprises drawing lines from two points, meeting at a third point on the circumference of a circle and making equal angles with the normal at that point (specular reflection). Thus, its main application in optics is to solve the problem, "Find the point on a spherical convex mirror at which a ray of light coming from a given point must strike in order to be reflected to another point." This leads to an equation of the fourth degree. ( Alhazen himself never used this algebraic rewriting of the problem) Alhazen's solution Ibn al-Haytham solved the problem using conic sections and a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]