HOME
*





Cartan Model
In mathematics, the Cartan model is a differential graded algebra that computes the equivariant cohomology of a space Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually consider .... References * Stefan Cordes, Gregory Moore, Sanjaye Ramgoolam, ''Lectures on 2D Yang-Mills Theory, Equivariant Cohomology and Topological Field Theories'', , 1994. Algebraic topology {{topology-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differential Graded Algebra
In mathematics, in particular abstract algebra and topology, a differential graded algebra is a graded associative algebra with an added chain complex structure that respects the algebra structure. __TOC__ Definition A differential graded algebra (or DG-algebra for short) ''A'' is a graded algebra equipped with a map d\colon A \to A which has either degree 1 (cochain complex convention) or degree −1 (chain complex convention) that satisfies two conditions: A more succinct way to state the same definition is to say that a DG-algebra is a monoid object in the monoidal category of chain complexes. A DG morphism between DG-algebras is a graded algebra homomorphism which respects the differential ''d''. A differential graded augmented algebra (also called a DGA-algebra, an augmented DG-algebra or simply a DGA) is a DG-algebra equipped with a DG morphism to the ground ring (the terminology is due to Henri Cartan). ''Warning:'' some sources use the term ''DGA'' for a DG-alge ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Equivariant Cohomology
In mathematics, equivariant cohomology (or ''Borel cohomology'') is a cohomology theory from algebraic topology which applies to topological spaces with a ''group action''. It can be viewed as a common generalization of group cohomology and an ordinary cohomology theory. Specifically, the equivariant cohomology ring of a space X with action of a topological group G is defined as the ordinary cohomology ring with coefficient ring \Lambda of the homotopy quotient EG \times_G X: :H_G^*(X; \Lambda) = H^*(EG \times_G X; \Lambda). If G is the trivial group, this is the ordinary cohomology ring of X, whereas if X is contractible, it reduces to the cohomology ring of the classifying space BG (that is, the group cohomology of G when ''G'' is finite.) If ''G'' acts freely on ''X'', then the canonical map EG \times_G X \to X/G is a homotopy equivalence and so one gets: H_G^*(X; \Lambda) = H^*(X/G; \Lambda). Definitions It is also possible to define the equivariant cohomology H_G^*(X;A) of X ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds. Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topological spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]