Cartan's Identity
In mathematics, the interior product (also known as interior derivative, interior multiplication, inner multiplication, inner derivative, insertion operator, or inner derivation) is a degree −1 (anti)derivation on the exterior algebra of differential forms on a smooth manifold. The interior product, named in opposition to the exterior product, should not be confused with an inner product. The interior product \iota_X \omega is sometimes written as X \mathbin \omega. Definition The interior product is defined to be the contraction of a differential form with a vector field. Thus if X is a vector field on the manifold M, then \iota_X : \Omega^p(M) \to \Omega^(M) is the map which sends a p-form \omega to the (p - 1)-form \iota_X \omega defined by the property that (\iota_X\omega)\left(X_1, \ldots, X_\right) = \omega\left(X, X_1, \ldots, X_\right) for any vector fields X_1, \ldots, X_. The interior product is the unique antiderivation of degree −1 on the exteri ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Duality Pairing
Duality may refer to: Mathematics * Duality (mathematics), a mathematical concept ** Dual (category theory), a formalization of mathematical duality ** Duality (optimization) ** Duality (order theory), a concept regarding binary relations ** Duality (projective geometry), general principle of projective geometry ** Duality principle (Boolean algebra), the extension of order-theoretic duality to Boolean algebras ** S-duality (homotopy theory) * Philosophy, logic, and psychology * Dualistic cosmology, a twofold division in several spiritual and religious worldviews * Dualism (philosophy of mind), where the body and mind are considered to be irreducibly distinct * De Morgan's laws, specifically the ability to generate the dual of any logical expression * Complementary duality of Carl Jung's functions and types in Socionics Science Electrical and mechanical * Duality (electrical circuits), regarding isomorphism of electrical circuits * Duality (mechanical engineering), reg ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Differential Forms
In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics. For instance, the expression is an example of a -form, and can be integrated over an interval contained in the domain of : :\int_a^b f(x)\,dx. Similarly, the expression is a -form that can be integrated over a surface : :\int_S (f(x,y,z)\,dx\wedge dy + g(x,y,z)\,dz\wedge dx + h(x,y,z)\,dy\wedge dz). The symbol denotes the exterior product, sometimes called the ''wedge product'', of two differential forms. Likewise, a -form represents a volume element that can be integrated over a region of space. In general, a -form is an object that may be integrated over a -dimensional manifold, and is homogeneous of degree in the coordinate differentials dx, dy, \ldots. On an -dimensional manifold, t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
MathOverflow
MathOverflow is a mathematics question-and-answer (Q&A) website, which serves as an online community of mathematicians. It allows users to ask questions, submit answers, and rate both, all while getting merit points for their activities. It is a part of the Stack Exchange Network. It is primarily for asking questions on mathematics research – i.e. related to unsolved problems and the extension of knowledge of mathematics into areas that are not yet known – and does not welcome requests from non-mathematicians for instruction, for example homework exercises. It does welcome various questions on other topics that might normally be discussed among mathematicians, for example about publishing, refereeing, advising, getting tenure, etc. It is generally inhospitable to questions perceived as tendentious or argumentative. Origin and history The website was started by Berkeley graduate students and postdocs Anton Geraschenko, David Zureick-Brown, and Scott Morrison on 28 Septe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Élie Cartan
Élie Joseph Cartan (; 9 April 1869 – 6 May 1951) was an influential French mathematician who did fundamental work in the theory of Lie groups, differential systems (coordinate-free geometric formulation of PDEs), and differential geometry. He also made significant contributions to general relativity and indirectly to quantum mechanics. He is widely regarded as one of the greatest mathematicians of the twentieth century. His son Henri Cartan was an influential mathematician working in algebraic topology. Life Élie Cartan was born 9 April 1869 in the village of Dolomieu, Isère to Joseph Cartan (1837–1917) and Anne Cottaz (1841–1927). Joseph Cartan was the village blacksmith; Élie Cartan recalled that his childhood had passed under "blows of the anvil, which started every morning from dawn", and that "his mother, during those rare minutes when she was free from taking care of the children and the house, was working with a spinning-wheel". Élie had an elder sister Je ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Steenrod Algebra
In algebraic topology, a Steenrod algebra was defined by to be the algebra of stable cohomology operations for mod p cohomology. For a given prime number p, the Steenrod algebra A_p is the graded Hopf algebra over the field \mathbb_p of order p, consisting of all stable cohomology operations for mod p cohomology. It is generated by the Steenrod squares introduced by for p=2, and by the Steenrod reduced pth powers introduced in and the Bockstein homomorphism for p>2. The term "Steenrod algebra" is also sometimes used for the algebra of cohomology operations of a generalized cohomology theory. Cohomology operations A cohomology operation is a natural transformation between cohomology functors. For example, if we take cohomology with coefficients in a ring R, the cup product squaring operation yields a family of cohomology operations: :H^n(X;R) \to H^(X;R) :x \mapsto x \smile x. Cohomology operations need not be homomorphisms of graded rings; see the Cartan formula below. Thes ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Moment Map
In mathematics, specifically in symplectic geometry, the momentum map (or, by false etymology, moment map) is a tool associated with a Hamiltonian action of a Lie group on a symplectic manifold, used to construct conserved quantities for the action. The momentum map generalizes the classical notions of linear and angular momentum. It is an essential ingredient in various constructions of symplectic manifolds, including symplectic (Marsden–Weinstein) quotients, discussed below, and symplectic cuts and sums. Formal definition Let ''M'' be a manifold with symplectic form ω. Suppose that a Lie group ''G'' acts on ''M'' via symplectomorphisms (that is, the action of each ''g'' in ''G'' preserves ω). Let \mathfrak be the Lie algebra of ''G'', \mathfrak^* its dual, and :\langle, \rangle : \mathfrak^* \times \mathfrak \to \mathbf the pairing between the two. Any ξ in \mathfrak induces a vector field ρ(ξ) on ''M'' describing the infinitesimal action of ξ. To be precise, at a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
General Relativity
General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the ' is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations. Newton's law of universal gravitation, which describes classical gravity, can be seen as a prediction of general relativity for the almost flat spacetime geometry around stationary mass distributions. Some predictions of general relativity, however, are beyond Newton's law of universal gravitat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Symplectic Geometry
Symplectic geometry is a branch of differential geometry and differential topology that studies symplectic manifolds; that is, differentiable manifolds equipped with a closed differential form, closed, nondegenerate form, nondegenerate differential form, 2-form. Symplectic geometry has its origins in the Hamiltonian mechanics, Hamiltonian formulation of classical mechanics where the phase space of certain classical systems takes on the structure of a symplectic manifold. The term "symplectic", introduced by Weyl, is a calque of "complex"; previously, the "symplectic group" had been called the "line complex group". "Complex" comes from the Latin ''com-plexus'', meaning "braided together" (co- + plexus), while symplectic comes from the corresponding Greek ''sym-plektikos'' (συμπλεκτικός); in both cases the stem comes from the Indo-European root wiktionary:Reconstruction:Proto-Indo-European/pleḱ-, *pleḱ- The name reflects the deep connections between complex and sym ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lie Derivative
In differential geometry, the Lie derivative ( ), named after Sophus Lie by Władysław Ślebodziński, evaluates the change of a tensor field (including scalar functions, vector fields and one-forms), along the flow defined by another vector field. This change is coordinate invariant and therefore the Lie derivative is defined on any differentiable manifold. Functions, tensor fields and forms can be differentiated with respect to a vector field. If ''T'' is a tensor field and ''X'' is a vector field, then the Lie derivative of ''T'' with respect to ''X'' is denoted \mathcal_X(T). The differential operator T \mapsto \mathcal_X(T) is a derivation of the algebra of tensor fields of the underlying manifold. The Lie derivative commutes with contraction and the exterior derivative on differential forms. Although there are many concepts of taking a derivative in differential geometry, they all agree when the expression being differentiated is a function or scalar field. Thus in t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exterior Derivative
On a differentiable manifold, the exterior derivative extends the concept of the differential of a function to differential forms of higher degree. The exterior derivative was first described in its current form by Élie Cartan in 1899. The resulting calculus, known as exterior calculus, allows for a natural, metric-independent generalization of Stokes' theorem, Gauss's theorem, and Green's theorem from vector calculus. If a differential -form is thought of as measuring the flux through an infinitesimal - parallelotope at each point of the manifold, then its exterior derivative can be thought of as measuring the net flux through the boundary of a -parallelotope at each point. Definition The exterior derivative of a differential form of degree (also differential -form, or just -form for brevity here) is a differential form of degree . If is a smooth function (a -form), then the exterior derivative of is the differential of . That is, is the unique -form such that for e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Product Rule
In calculus, the product rule (or Leibniz rule or Leibniz product rule) is a formula used to find the derivatives of products of two or more functions. For two functions, it may be stated in Lagrange's notation as (u \cdot v)' = u ' \cdot v + u \cdot v' or in Leibniz's notation as \frac (u\cdot v) = \frac \cdot v + u \cdot \frac. The rule may be extended or generalized to products of three or more functions, to a rule for higher-order derivatives of a product, and to other contexts. Discovery Discovery of this rule is credited to Gottfried Leibniz, who demonstrated it using differentials. (However, J. M. Child, a translator of Leibniz's papers, argues that it is due to Isaac Barrow.) Here is Leibniz's argument: Let ''u''(''x'') and ''v''(''x'') be two differentiable functions of ''x''. Then the differential of ''uv'' is : \begin d(u\cdot v) & = (u + du)\cdot (v + dv) - u\cdot v \\ & = u\cdot dv + v\cdot du + du\cdot dv. \end Since the term ''du''·''dv'' is "negligi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |