Carl Neumann
Carl Gottfried Neumann (also Karl; 7 May 1832 – 27 March 1925) was a German mathematician. Biography Neumann was born in Königsberg, Prussia, as the son of the mineralogist, physicist and mathematician Franz Ernst Neumann (1798–1895), who was professor of mineralogy and physics at Königsberg University. Carl Neumann studied in Königsberg and Halle and was a professor at the universities of Halle, Basel, Tübingen, and Leipzig. While in Königsberg, he studied physics with his father, and later as a working mathematician, dealt almost exclusively with problems arising from physics. Stimulated by Bernhard Riemann's work on electrodynamics, Neumann developed a theory founded on the finite propagation of electrodynamic actions, which interested Wilhelm Eduard Weber and Rudolf Clausius into striking up a correspondence with him. Weber described Neumann's professorship at Leipzig as for "higher mechanics, which essentially encompasses mathematical physics," and his lectures di ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Königsberg
Königsberg (, ) was the historic Prussian city that is now Kaliningrad, Russia. Königsberg was founded in 1255 on the site of the ancient Old Prussian settlement ''Twangste'' by the Teutonic Knights during the Northern Crusades, and was named in honour of King Ottokar II of Bohemia. A Baltic port city, it successively became the capital of the Królewiec Voivodeship, the State of the Teutonic Order, the Duchy of Prussia and the provinces of East Prussia and Prussia. Königsberg remained the coronation city of the Prussian monarchy, though the capital was moved to Berlin in 1701. Between the thirteenth and the twentieth centuries, the inhabitants spoke predominantly German, but the multicultural city also had a profound influence upon the Lithuanian and Polish cultures. The city was a publishing center of Lutheran literature, including the first Polish translation of the New Testament, printed in the city in 1551, the first book in Lithuanian and the first Lutheran catechism, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Neumann Polynomial
In mathematics, the Neumann polynomials, introduced by Carl Neumann for the special case \alpha=0, are a sequence of polynomials in 1/t used to expand functions in term of Bessel functions. The first few polynomials are :O_0^(t)=\frac 1 t, :O_1^(t)=2\frac , :O_2^(t)=\frac + 4\frac , :O_3^(t)=2\frac + 8\frac , :O_4^(t)=\frac + 4\frac + 16\frac . A general form for the polynomial is :O_n^(t)= \frac \sum_^ (-1)^\frac \left(\frac 2 t \right)^, and they have the "generating function" :\frac \frac 1 = \sum_O_n^(t) J_(z), where ''J'' are Bessel functions. To expand a function ''f'' in the form :f(z)=\sum_ a_n J_(z)\, for , z, |
|
Geometric Series
In mathematics, a geometric series is the sum of an infinite number of terms that have a constant ratio between successive terms. For example, the series :\frac \,+\, \frac \,+\, \frac \,+\, \frac \,+\, \cdots is geometric, because each successive term can be obtained by multiplying the previous term by 1/2. In general, a geometric series is written as a + ar + ar^2 + ar^3 + ..., where a is the coefficient of each term and r is the common ratio between adjacent terms. The geometric series had an important role in the early development of calculus, is used throughout mathematics, and can serve as an introduction to frequently used mathematical tools such as the Taylor series, the complex Fourier series, and the matrix exponential. The name geometric series indicates each term is the geometric mean of its two neighboring terms, similar to how the name arithmetic series indicates each term is the arithmetic mean of its two neighboring terms. The sequence of geometric series term ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dirichlet's Principle
In mathematics, and particularly in potential theory, Dirichlet's principle is the assumption that the minimizer of a certain energy functional is a solution to Poisson's equation. Formal statement Dirichlet's principle states that, if the function u ( x ) is the solution to Poisson's equation :\Delta u + f = 0 on a domain \Omega of \mathbb^n with boundary condition :u=g on the boundary \partial\Omega, then ''u'' can be obtained as the minimizer of the Dirichlet energy :E (x)= \int_\Omega \left(\frac, \nabla v, ^2 - vf\right)\,\mathrmx amongst all twice differentiable functions v such that v=g on \partial\Omega (provided that there exists at least one function making the Dirichlet's integral finite). This concept is named after the German mathematician Peter Gustav Lejeune Dirichlet. History The name "Dirichlet's principle" is due to Riemann, who applied it in the study of complex analytic functions. Riemann (and others such as Gauss and Dirichlet) knew that Diric ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
A Dynamical Theory Of The Electromagnetic Field
"A Dynamical Theory of the Electromagnetic Field" is a paper by James Clerk Maxwell on electromagnetism, published in 1865. ''(Paper read at a meeting of the Royal Society on 8 December 1864).'' In the paper, Maxwell derives an electromagnetic wave equation with a velocity for light in close agreement with measurements made by experiment, and deduces that light is an electromagnetic wave. Publication Following standard procedure for the time, the paper was first read to the Royal Society on 8 December 1864, having been sent by Maxwell to the Society on 27 October. It then underwent peer review, being sent to William Thompson (later Lord Kelvin) on 24 December 1864. It was then sent to George Gabriel Stokes, the Society's Physical Sciences Secretary, on 23 March 1865. It was approved for publication in the ''Philosophical Transactions of the Royal Society'' on 15 June 1865, by the Committee of Papers (essentially the Society's governing Council) and sent to the printer the following ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
James Clerk Maxwell
James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and light as different manifestations of the same phenomenon. Maxwell's equations for electromagnetism have been called the " second great unification in physics" where the first one had been realised by Isaac Newton. With the publication of "A Dynamical Theory of the Electromagnetic Field" in 1865, Maxwell demonstrated that electric and magnetic fields travel through space as waves moving at the speed of light. He proposed that light is an undulation in the same medium that is the cause of electric and magnetic phenomena. (This article accompanied an 8 December 1864 presentation by Maxwell to the Royal Society. His statement that "light and magnetism are affections of the same substance" is at page 499.) The unification of light and electrical ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Theoretical Physics From Ohm To Einstein
A theory is a rational type of abstract thinking about a phenomenon, or the results of such thinking. The process of contemplative and rational thinking is often associated with such processes as observational study or research. Theories may be scientific, belong to a non-scientific discipline, or no discipline at all. Depending on the context, a theory's assertions might, for example, include generalized explanations of how nature works. The word has its roots in ancient Greek, but in modern use it has taken on several related meanings. In modern science, the term "theory" refers to scientific theories, a well-confirmed type of explanation of nature, made in a way consistent with the scientific method, and fulfilling the criteria required by modern science. Such theories are described in such a way that scientific tests should be able to provide empirical support for it, or empirical contradiction (" falsify") of it. Scientific theories are the most reliable, rigorous, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Russell McCormmach
Russell Keith McCormmach (born 9 October 1933), the husband of the late Christa Jungnickel, is an American historian of physics. McCormmach grew up in Walla Walla, Washington and studied physics at Washington State College with bachelor's degree in 1955. As a Rhodes scholar, he studied politics, philosophy and economics at Oxford University with bachelor's degree in 1959. He then worked as an electronics engineer at Bell Laboratories. In 1967 he received a Ph.D. in the history of science from Case Institute of Technology under Martin J. Klein. McCormmach was then a professor of the history of science at the University of Pennsylvania and the Johns Hopkins University (until 1983), and then at the University of Oregon. There he is a professor emeritus. McCormmach studied the history of German physics in the 19th and 20th centuries. His novel ''Night Thoughts of a Classical Physicist'' consists of the fictional reminiscences of an elderly German physics professor named Viktor Jacob ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Christa Jungnickel
Christa Jungnickel (11 April 1935 – 12 August 1990) was a German-American historian of science. Life Jungnickel was originally from Germany, one of three daughters of a German soldier who was lost in Russia during World War II. As a teenager, she emigrated with her family to the US; her mother, formerly an office worker, became a house cleaner in San Francisco. Jungnickel herself began work after high school as a typist and later an accountant for a stock broker, while studying part-time at the University of San Francisco. She eventually transferred to full-time study at Stanford University, working there with historian Jacqueline Strain. After graduating in 1969, she began graduate study at the University of Pennsylvania, but transferred in 1972 to Johns Hopkins University, and completed her doctorate at Johns Hopkins in 1978 with a dissertation concerning the Royal Saxon Academy of Sciences. Jungnickel's doctoral supervisor was Russell McCormmach, whom she married. When J ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rudolf Clausius
Rudolf Julius Emanuel Clausius (; 2 January 1822 – 24 August 1888) was a German physicist and mathematician and is considered one of the central founding fathers of the science of thermodynamics. By his restatement of Sadi Carnot's principle known as the Carnot cycle, he gave the theory of heat a truer and sounder basis. His most important paper, "On the Moving Force of Heat", published in 1850, first stated the basic ideas of the second law of thermodynamics. In 1865 he introduced the concept of entropy. In 1870 he introduced the virial theorem, which applied to heat. Life Clausius was born in Köslin (now Koszalin, Poland) in the Province of Pomerania in Prussia. His father was a Protestant pastor and school inspector, and Rudolf studied in the school of his father. In 1838, he went to the Gymnasium in Stettin. Clausius graduated from the University of Berlin in 1844 where he had studied mathematics and physics since 1840 with, among others, Gustav Magnus, Peter Gustav Le ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Wilhelm Eduard Weber
Wilhelm Eduard Weber (; ; 24 October 1804 – 23 June 1891) was a German physicist and, together with Carl Friedrich Gauss, inventor of the first electromagnetic telegraph. Biography of Wilhelm Early years Weber was born in Schlossstrasse in Wittenberg, where his father, Michael Weber, was professor of theology. The building had previously been the home of Abraham Vater. Wilhelm was the second of three brothers, all of whom were distinguished by an aptitude for science. After the dissolution of the University of Wittenberg his father was transferred to Halle in 1815. Wilhelm had received his first lessons from his father, but was now sent to the Orphan Asylum and Grammar School at Halle. After that he entered the University, and devoted himself to natural philosophy. He distinguished himself so much in his classes, and by original work, that after taking his degree of Doctor and becoming a ''Privatdozent'' he was appointed Professor Extraordinary of natural philosophy at ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bernhard Riemann
Georg Friedrich Bernhard Riemann (; 17 September 1826 – 20 July 1866) was a German mathematician who made contributions to analysis, number theory, and differential geometry. In the field of real analysis, he is mostly known for the first rigorous formulation of the integral, the Riemann integral, and his work on Fourier series. His contributions to complex analysis include most notably the introduction of Riemann surfaces, breaking new ground in a natural, geometric treatment of complex analysis. His 1859 paper on the prime-counting function, containing the original statement of the Riemann hypothesis, is regarded as a foundational paper of analytic number theory. Through his pioneering contributions to differential geometry, Riemann laid the foundations of the mathematics of general relativity. He is considered by many to be one of the greatest mathematicians of all time. Biography Early years Riemann was born on 17 September 1826 in Breselenz, a village near Dannenb ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |