Braided Monoidal Categories
   HOME





Braided Monoidal Categories
In mathematics, a ''commutativity constraint'' \gamma on a monoidal category ''\mathcal'' is a choice of isomorphism \gamma_ : A\otimes B \rightarrow B\otimes A for each pair of objects ''A'' and ''B'' which form a "natural family." In particular, to have a commutativity constraint, one must have A \otimes B \cong B \otimes A for all pairs of objects A,B \in \mathcal. A braided monoidal category is a monoidal category \mathcal equipped with a braiding—that is, a commutativity constraint \gamma that satisfies axioms including the hexagon identities defined below. The term ''braided'' references the fact that the braid group plays an important role in the theory of braided monoidal categories. Partly for this reason, braided monoidal categories and other topics are related in the theory of knot invariants. Alternatively, a braided monoidal category can be seen as a tricategory with one 0-cell and one 1-cell. Braided monoidal categories were introduced by André Joyal a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rigid Category
In category theory, a branch of mathematics, a rigid category is a monoidal category where every object is rigid, that is, has a dual ''X''* (the internal Hom 'X'', 1 and a morphism 1 → ''X'' ⊗ ''X''* satisfying natural conditions. The category is called right rigid or left rigid according to whether it has right duals or left duals. They were first defined (following Alexander Grothendieck) by Neantro Saavedra Rivano in his thesis on Tannakian categories. Definition There are at least two equivalent definitions of a rigidity. *An object ''X'' of a monoidal category is called left rigid if there is an object ''Y'' and morphisms \eta_X : \mathbf \to X \otimes Y and \epsilon_X : Y \otimes X \to \mathbf such that both compositions X ~ \xrightarrow ~ (X \otimes Y) \otimes X ~ \xrightarrow ~ X \otimes (Y \otimes X) ~ \xrightarrow ~ X Y ~ \xrightarrow ~ Y \otimes (X \otimes Y ) ~ \xrightarrow ~ (Y \otimes X) \otimes Y ~ \xrightarrow ~ Y are identities. A right rigid ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Braids
A braid (also referred to as a plait; ) is a complex structure or pattern formed by interlacing three or more strands of flexible material such as textile yarns, wire, or hair. The simplest and most common version is a flat, solid, three-stranded structure. More complex patterns can be constructed from an arbitrary number of strands to create a wider range of structures (such as a fishtail braid, a five-stranded braid, rope braid, a French braid and a waterfall braid). The structure is usually long and narrow with each component strand functionally equivalent in zigzagging forward through the overlapping mass of the others. It can be compared with the process of weaving, which usually involves two separate perpendicular groups of strands ( warp and weft). Historically, the materials used have depended on the indigenous plants and animals available in the local area. During the Industrial Revolution, mechanized braiding equipment was invented to increase production. The braiding ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


John Baez
John Carlos Baez ( ; born June 12, 1961) is an American mathematical physicist and a professor of mathematics at the University of California, Riverside (UCR) in Riverside, California. He has worked on spin foams in loop quantum gravity, applications of higher categories to physics, and applied category theory. Additionally, Baez is known on the World Wide Web as the author of the crackpot index. Education John C. Baez attended Princeton University where he graduated with an A.B. in mathematics in 1982; his senior thesis was titled "Recursivity in quantum mechanics", under the supervision of John P. Burgess. He earned his doctorate in 1986 from the Massachusetts Institute of Technology under the direction of Irving Segal. Career Baez was a post-doctoral researcher at Yale University. Since 1989, he has been a faculty member at UC Riverside. From 2010 to 2012, he was a visiting professor at the Centre for Quantum Technologies in Singapore and continued working th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Vyjayanthi Chari
Vyjayanthi Chari (born 1958) is an Indian–American Distinguished Professor and the F. Burton Jones Endowed Chair for Pure Mathematics at the University of California, Riverside, known for her research in representation theory and quantum algebra.. In 2015 she was elected as a fellow of the American Mathematical Society. Education Chari has a bachelor's, master's, and doctoral degree from the University of Mumbai. Chari received her Ph.D. from the University of Mumbai under the supervision of Rajagopalan Parthasarathy. Professional career Following her Ph.D., she became a fellow at the Tata Institute of Fundamental Research, Mumbai. In 1991, she joined the University of California, Riverside (UCR) where she is now a Distinguished Professor of Mathematics. During her career, she has had several visiting positions. They were: invited senior participant at the Mittag-Leffler Institute, Sweden; an invited professor at the University of Cologne, Germany; an invited professor a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Linear Types
Substructural type systems are a family of type systems analogous to substructural logics where one or more of the structural rules are absent or only allowed under controlled circumstances. Such systems can constrain access to system resources such as files, locks, and memory by keeping track of changes of state and prohibiting invalid states. Different substructural type systems Several type systems have emerged by discarding some of the structural rules of exchange, weakening, and contraction: *''Ordered type systems'' (discard exchange, weakening and contraction): Every variable is used exactly once in the order it was introduced. *''Linear type systems'' (allow exchange, but neither weakening nor contraction): Every variable is used exactly once. *''Affine type systems'' (allow exchange and weakening, but not contraction): Every variable is used at most once. *''Relevant type systems'' (allow exchange and contraction, but not weakening): Every variable is used at least ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Logic
Linear logic is a substructural logic proposed by French logician Jean-Yves Girard as a refinement of classical and intuitionistic logic, joining the dualities of the former with many of the constructive properties of the latter. Although the logic has also been studied for its own sake, more broadly, ideas from linear logic have been influential in fields such as programming languages, game semantics, and quantum physics (because linear logic can be seen as the logic of quantum information theory), as well as linguistics, particularly because of its emphasis on resource-boundedness, duality, and interaction. Linear logic lends itself to many different presentations, explanations, and intuitions. Proof-theoretically, it derives from an analysis of classical sequent calculus in which uses of (the structural rules) contraction and weakening are carefully controlled. Operationally, this means that logical deduction is no longer merely about an ever-expanding collection of pe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Closed Monoidal Category
In mathematics, especially in category theory, a closed monoidal category (or a ''monoidal closed category'') is a category that is both a monoidal category and a closed category in such a way that the structures are compatible. A classic example is the category of sets, Set, where the monoidal product of sets A and B is the usual cartesian product A \times B, and the internal Hom B^A is the set of functions from A to B. A non- cartesian example is the category of vector spaces, ''K''-Vect, over a field K. Here the monoidal product is the usual tensor product of vector spaces, and the internal Hom is the vector space of linear maps from one vector space to another. The internal language of closed symmetric monoidal categories is linear logic and the type system is the linear type system. Many examples of closed monoidal categories are symmetric. However, this need not always be the case, as non-symmetric monoidal categories can be encountered in category-theoret ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Knot Invariants
In the mathematical field of knot theory, a knot invariant is a quantity (in a broad sense) defined for each knot which is the same for equivalent knots. The equivalence is often given by ambient isotopy but can be given by homeomorphism. Some invariants are indeed numbers (algebraic), but invariants can range from the simple, such as a yes/no answer, to those as complex as a homology theory (for example, "a ''knot invariant'' is a rule that assigns to any knot a quantity such that if and are equivalent then ."). Research on invariants is not only motivated by the basic problem of distinguishing one knot from another but also to understand fundamental properties of knots and their relations to other branches of mathematics. Knot invariants are thus used in knot classification,Purcell, Jessica (2020). ''Hyperbolic Knot Theory'', p.7. American Mathematical Society. "A ''knot invariant'' is a function from the set of knots to some other set whose value depends only on the equiv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Quasitriangular Hopf Algebra
In mathematics, a Hopf algebra, ''H'', is quasitriangularMontgomery & Schneider (2002), p. 72 if there exists an invertible element, ''R'', of H \otimes H such that :*R \ \Delta(x)R^ = (T \circ \Delta)(x) for all x \in H, where \Delta is the coproduct on ''H'', and the linear map T : H \otimes H \to H \otimes H is given by T(x \otimes y) = y \otimes x, :*(\Delta \otimes 1)(R) = R_ \ R_, :*(1 \otimes \Delta)(R) = R_ \ R_, where R_ = \phi_(R), R_ = \phi_(R), and R_ = \phi_(R), where \phi_ : H \otimes H \to H \otimes H \otimes H, \phi_ : H \otimes H \to H \otimes H \otimes H, and \phi_ : H \otimes H \to H \otimes H \otimes H, are algebra morphism In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Al ...s determined by :\phi_(a \otimes b) = a \otimes b \otimes 1, :\phi_(a \otimes b) = a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Group
In mathematics and theoretical physics, the term quantum group denotes one of a few different kinds of noncommutative algebras with additional structure. These include Drinfeld–Jimbo type quantum groups (which are quasitriangular Hopf algebras), compact matrix quantum groups (which are structures on unital separable C*-algebras), and bicrossproduct quantum groups. Despite their name, they do not themselves have a natural group structure, though they are in some sense 'close' to a group. The term "quantum group" first appeared in the theory of quantum integrable systems, which was then formalized by Vladimir Drinfeld and Michio Jimbo as a particular class of Hopf algebra. The same term is also used for other Hopf algebras that deform or are close to classical Lie groups or Lie algebras, such as a "bicrossproduct" class of quantum groups introduced by Shahn Majid a little after the work of Drinfeld and Jimbo. In Drinfeld's approach, quantum groups arise as Hopf algebras depe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lie Algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an operation called the Lie bracket, an alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identity. In other words, a Lie algebra is an algebra over a field for which the multiplication operation (called the Lie bracket) is alternating and satisfies the Jacobi identity. The Lie bracket of two vectors x and y is denoted ,y/math>. A Lie algebra is typically a non-associative algebra. However, every associative algebra gives rise to a Lie algebra, consisting of the same vector space with the commutator Lie bracket, ,y= xy - yx . Lie algebras are closely related to Lie groups, which are groups that are also smooth manifolds: every Lie group gives rise to a Lie algebra, which is the tangent space at the identity. (In this case, the Lie bracket measures the failure of commutativity for the Lie group.) Conversely, to any finite-di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]