Beta-dual Space
   HOME
*





Beta-dual Space
In functional analysis and related areas of mathematics, the beta-dual or -dual is a certain linear subspace of the algebraic dual of a sequence space. Definition Given a sequence space the -dual of is defined as :X^:= \left \. If is an FK-space then each in defines a continuous linear form on :f_y(x) := \sum_^ x_i y_i \qquad x \in X. Examples * c_0^\beta = \ell^1 * (\ell^1)^\beta = \ell^\infty * \omega^\beta = \ Properties The beta-dual of an FK-space is a linear subspace In mathematics, and more specifically in linear algebra, a linear subspace, also known as a vector subspaceThe term ''linear subspace'' is sometimes used for referring to flats and affine subspaces. In the case of vector spaces over the reals, li ... of the continuous dual of . If is an FK-AK space then the beta dual is linear isomorphic to the continuous dual. {{mathanalysis-stub Functional analysis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Functional Analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. Inner product space#Definition, inner product, Norm (mathematics)#Definition, norm, Topological space#Definition, topology, etc.) and the linear transformation, linear functions defined on these spaces and respecting these structures in a suitable sense. The historical roots of functional analysis lie in the study of function space, spaces of functions and the formulation of properties of transformations of functions such as the Fourier transform as transformations defining continuous function, continuous, unitary operator, unitary etc. operators between function spaces. This point of view turned out to be particularly useful for the study of differential equations, differential and integral equations. The usage of the word ''functional (mathematics), functional'' as a noun goes back to the calculus of variati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Dual
In mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ..., any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V'', together with the vector space structure of pointwise addition and scalar multiplication by constants. The dual space as defined above is defined for all vector spaces, and to avoid ambiguity may also be called the . When defined for a topological vector space, there is a subspace of the dual space, corresponding to continuous linear functionals, called the ''continuous dual space''. Dual vector spaces find application in many branches of mathematics that use vector spaces, such as in tensor analysis with finite-dimensional vector spaces. When applied to vector spaces of functions (wh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sequence Space
In functional analysis and related areas of mathematics, a sequence space is a vector space whose elements are infinite sequences of real or complex numbers. Equivalently, it is a function space whose elements are functions from the natural numbers to the field ''K'' of real or complex numbers. The set of all such functions is naturally identified with the set of all possible infinite sequences with elements in ''K'', and can be turned into a vector space under the operations of pointwise addition of functions and pointwise scalar multiplication. All sequence spaces are linear subspaces of this space. Sequence spaces are typically equipped with a norm, or at least the structure of a topological vector space. The most important sequence spaces in analysis are the spaces, consisting of the -power summable sequences, with the ''p''-norm. These are special cases of L''p'' spaces for the counting measure on the set of natural numbers. Other important classes of sequences like ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


FK-space
In functional analysis and related areas of mathematics a FK-space or Fréchet coordinate space is a sequence space equipped with a topological structure such that it becomes a Fréchet space. FK-spaces with a normable topology are called BK-spaces. There exists only one topology to turn a sequence space into a Fréchet space, namely the topology of pointwise convergence. Thus the name ''coordinate space'' because a sequence in an FK-space converges if and only if it converges for each coordinate. FK-spaces are examples of topological vector spaces. They are important in summability theory. Definition A FK-space is a sequence space X, that is a linear subspace of vector space of all complex valued sequences, equipped with the topology of pointwise convergence. We write the elements of X as \left(x_n\right)_ with x_n \in \Complex. Then sequence \left(a_n\right)_^ in X converges to some point \left(x_n\right)_ if it converges pointwise for each n. That is \lim_ \left(a_n\right)_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Continuous Linear Form
In functional analysis and related areas of mathematics, a continuous linear operator or continuous linear mapping is a continuous linear transformation between topological vector spaces. An operator between two normed spaces is a bounded linear operator if and only if it is a continuous linear operator. Continuous linear operators Characterizations of continuity Suppose that F : X \to Y is a linear operator between two topological vector spaces (TVSs). The following are equivalent: F is continuous. F is continuous at some point x \in X. F is continuous at the origin in X. if Y is locally convex then this list may be extended to include: for every continuous seminorm q on Y, there exists a continuous seminorm p on X such that q \circ F \leq p. if X and Y are both Hausdorff locally convex spaces then this list may be extended to include: F is weakly continuous and its transpose ^t F : Y^ \to X^ maps equicontinuous subsets of Y^ to equicontinuous subsets o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Linear Subspace
In mathematics, and more specifically in linear algebra, a linear subspace, also known as a vector subspaceThe term ''linear subspace'' is sometimes used for referring to flats and affine subspaces. In the case of vector spaces over the reals, linear subspaces, flats, and affine subspaces are also called ''linear manifolds'' for emphasizing that there are also manifolds. is a vector space that is a subset of some larger vector space. A linear subspace is usually simply called a ''subspace'' when the context serves to distinguish it from other types of subspaces. Definition If ''V'' is a vector space over a field ''K'' and if ''W'' is a subset of ''V'', then ''W'' is a linear subspace of ''V'' if under the operations of ''V'', ''W'' is a vector space over ''K''. Equivalently, a nonempty subset ''W'' is a subspace of ''V'' if, whenever are elements of ''W'' and are elements of ''K'', it follows that is in ''W''. As a corollary, all vector spaces are equipped with at least two ( ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Continuous Dual
In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V'', together with the vector space structure of pointwise addition and scalar multiplication by constants. The dual space as defined above is defined for all vector spaces, and to avoid ambiguity may also be called the . When defined for a topological vector space, there is a subspace of the dual space, corresponding to continuous linear functionals, called the ''continuous dual space''. Dual vector spaces find application in many branches of mathematics that use vector spaces, such as in tensor analysis with finite-dimensional vector spaces. When applied to vector spaces of functions (which are typically infinite-dimensional), dual spaces are used to describe measures, distributions, and Hilbert spaces. Consequently, the dual space is an important concept in functional analysis. Early terms for ''dual'' include ''polarer Raum'' ahn 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


FK-AK Space
In functional analysis and related areas of mathematics an FK-AK space or FK-space with the AK property is an FK-space which contains the space of finite sequences and has a Schauder basis. Examples and non-examples * c_0 the space of convergent sequences with the supremum norm has the AK property. * \ell^p (1 \leq p < \infty) the with the \, \cdot\, _p norm have the AK property. * \ell^\infty with the supremum norm does not have the AK property.


Properties

An FK-AK space E has the property E' \simeq E^\beta that is the continuous dual of E is