Beilinson Regulator
   HOME
*





Beilinson Regulator
In mathematics, especially in algebraic geometry, the Beilinson regulator is the Chern class map from algebraic K-theory to Deligne cohomology: :K_n (X) \rightarrow \oplus_ H_D^ (X, \mathbf Q(p)). Here, ''X'' is a complex smooth projective variety, for example. It is named after Alexander Beilinson. The Beilinson regulator features in Beilinson's conjecture on special values of L-functions. The ''Dirichlet regulator'' map (used in the proof of Dirichlet's unit theorem) for the ring of integers \mathcal O_F of a number field ''F'' :\mathcal O_F^\times \rightarrow \mathbf R^, \ \ x \mapsto (\log , \sigma (x), )_\sigma is a particular case of the Beilinson regulator. (As usual, \sigma: F \subset \mathbf C runs over all complex embedding In mathematics, the tensor product of two fields is their tensor product as algebras over a common subfield. If no subfield is explicitly specified, the two fields must have the same characteristic and the common subfield is their prime subf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chern Class
In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since found applications in physics, Calabi–Yau manifolds, string theory, Chern–Simons theory, knot theory, Gromov–Witten invariants, topological quantum field theory, the Chern theorem etc. Chern classes were introduced by . Geometric approach Basic idea and motivation Chern classes are characteristic classes. They are topological invariants associated with vector bundles on a smooth manifold. The question of whether two ostensibly different vector bundles are the same can be quite hard to answer. The Chern classes provide a simple test: if the Chern classes of a pair of vector bundles do not agree, then the vector bundles are different. The converse, however, is not true. In topology, differential geometry, and algebraic geometry, it is often important to count how many l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic K-theory
Algebraic ''K''-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called ''K''-groups. These are groups in the sense of abstract algebra. They contain detailed information about the original object but are notoriously difficult to compute; for example, an important outstanding problem is to compute the ''K''-groups of the integers. ''K''-theory was discovered in the late 1950s by Alexander Grothendieck in his study of intersection theory on algebraic varieties. In the modern language, Grothendieck defined only ''K''0, the zeroth ''K''-group, but even this single group has plenty of applications, such as the Grothendieck–Riemann–Roch theorem. Intersection theory is still a motivating force in the development of (higher) algebraic ''K''-theory through its links with motivic cohomology and specifically Chow groups. The subject also includes classical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Deligne Cohomology
In mathematics, Deligne cohomology is the hypercohomology of the Deligne complex of a complex manifold. It was introduced by Pierre Deligne in unpublished work in about 1972 as a cohomology theory for algebraic varieties that includes both ordinary cohomology and intermediate Jacobians. For introductory accounts of Deligne cohomology see , , and . Definition The analytic Deligne complex Z(''p'')D, an on a complex analytic manifold ''X'' is0\rightarrow \mathbf Z(p)\rightarrow \Omega^0_X\rightarrow \Omega^1_X\rightarrow\cdots\rightarrow \Omega_X^ \rightarrow 0 \rightarrow \dotswhere Z(''p'') = (2π i)''p''Z. Depending on the context, \Omega^*_X is either the complex of smooth (i.e., ''C''∞) differential forms or of holomorphic forms, respectively. The Deligne cohomology is the ''q''-th hypercohomology of the Deligne complex. An alternative definition of this complex is given as the homotopy limit of the diagram\begin & & \mathbb \\ & & \downarrow \\ \Omega_X^ & \to & \Omega_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Variety
In algebraic geometry, a projective variety over an algebraically closed field ''k'' is a subset of some projective ''n''-space \mathbb^n over ''k'' that is the zero-locus of some finite family of homogeneous polynomials of ''n'' + 1 variables with coefficients in ''k'', that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of \mathbb^n. A projective variety is a projective curve if its dimension is one; it is a projective surface if its dimension is two; it is a projective hypersurface if its dimension is one less than the dimension of the containing projective space; in this case it is the set of zeros of a single homogeneous polynomial. If ''X'' is a projective variety defined by a homogeneous prime ideal ''I'', then the quotient ring :k _0, \ldots, x_nI is called the homogeneous coordinate ring of ''X''. Basic invariants of ''X'' such as the degree and the dim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Alexander Beilinson
Alexander A. Beilinson (born 1957) is the David and Mary Winton Green University professor at the University of Chicago and works on mathematics. His research has spanned representation theory, algebraic geometry and mathematical physics. In 1999 Beilinson was awarded the Ostrowski Prize with Helmut Hofer. In 2017 he was elected to the National Academy of Sciences. Work In 1978, Beilinson published a paper on coherent sheaves and several problems in linear algebra. His two-page note in the journal ''Functional Analysis and Its Applications'' was one of the papers on the study of derived categories of coherent sheaf (mathematics), sheaves. In 1981 Beilinson announced a proof of the Kazhdan–Lusztig conjectures and Jantzen conjectures with Joseph Bernstein. Independent of Beilinson and Bernstein, Jean-Luc Brylinski, Brylinski and Masaki Kashiwara, Kashiwara obtained a proof of the Kazhdan–Lusztig conjectures. However, the proof of Beilinson–Bernstein introduced a method ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Beilinson Conjecture
In mathematics, the study of special values of L-functions is a subfield of number theory devoted to generalising formulae such as the Leibniz formula for pi, namely :1 \,-\, \frac \,+\, \frac \,-\, \frac \,+\, \frac \,-\, \cdots \;=\; \frac,\! by the recognition that expression on the left-hand side is also ''L''(1) where ''L''(''s'') is the Dirichlet L-function for the Gaussian field. This formula is a special case of the analytic class number formula, and in those terms reads that the Gaussian field has class number 1, and also contains four roots of unity, so accounting for the factor ¼. Conjectures There are two families of conjectures, formulated for general classes of ''L''-functions (the very general setting being for ''L''-functions ''L''(''s'') associated to Chow motives over number fields), the division into two reflecting the questions of: how to replace π in the Leibniz formula by some other "transcendental" number (whether or not it is yet possible for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Special Values Of L-functions
In mathematics, the study of special values of L-functions is a subfield of number theory devoted to generalising formulae such as the Leibniz formula for pi, namely :1 \,-\, \frac \,+\, \frac \,-\, \frac \,+\, \frac \,-\, \cdots \;=\; \frac,\! by the recognition that expression on the left-hand side is also ''L''(1) where ''L''(''s'') is the Dirichlet L-function for the Gaussian field. This formula is a special case of the analytic class number formula, and in those terms reads that the Gaussian field has class number 1, and also contains four roots of unity, so accounting for the factor ¼. Conjectures There are two families of conjectures, formulated for general classes of ''L''-functions (the very general setting being for ''L''-functions ''L''(''s'') associated to Chow motives over number fields), the division into two reflecting the questions of: how to replace π in the Leibniz formula by some other "transcendental" number (whether or not it is yet possible fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirichlet's Unit Theorem
In mathematics, Dirichlet's unit theorem is a basic result in algebraic number theory due to Peter Gustav Lejeune Dirichlet. It determines the rank of the group of units in the ring of algebraic integers of a number field . The regulator is a positive real number that determines how "dense" the units are. The statement is that the group of units is finitely generated and has rank (maximal number of multiplicatively independent elements) equal to where is the ''number of real embeddings'' and the ''number of conjugate pairs of complex embeddings'' of . This characterisation of and is based on the idea that there will be as many ways to embed in the complex number field as the degree n = : \mathbb/math>; these will either be into the real numbers, or pairs of embeddings related by complex conjugation, so that Note that if is Galois over \mathbb then either or . Other ways of determining and are * use the primitive element theorem to write K = \mathbb(\alpha), and then ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ring Of Integers
In mathematics, the ring of integers of an algebraic number field K is the ring of all algebraic integers contained in K. An algebraic integer is a root of a monic polynomial with integer coefficients: x^n+c_x^+\cdots+c_0. This ring is often denoted by O_K or \mathcal O_K. Since any integer belongs to K and is an integral element of K, the ring \mathbb is always a subring of O_K. The ring of integers \mathbb is the simplest possible ring of integers. Namely, \mathbb=O_ where \mathbb is the field of rational numbers. And indeed, in algebraic number theory the elements of \mathbb are often called the "rational integers" because of this. The next simplest example is the ring of Gaussian integers \mathbb /math>, consisting of complex numbers whose real and imaginary parts are integers. It is the ring of integers in the number field \mathbb(i) of Gaussian rationals, consisting of complex numbers whose real and imaginary parts are rational numbers. Like the rational integers, \mathbb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Number Field
In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a field that contains \mathbb and has finite dimension when considered as a vector space over The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory. This study reveals hidden structures behind usual rational numbers, by using algebraic methods. Definition Prerequisites The notion of algebraic number field relies on the concept of a field. A field consists of a set of elements together with two operations, namely addition, and multiplication, and some distributivity assumptions. A prominent example of a field is the field of rational numbers, commonly denoted together with its usual operations of addition and multiplication. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Embedding
In mathematics, the tensor product of two fields is their tensor product as algebras over a common subfield. If no subfield is explicitly specified, the two fields must have the same characteristic and the common subfield is their prime subfield. The tensor product of two fields is sometimes a field, and often a direct product of fields; In some cases, it can contain non-zero nilpotent elements. The tensor product of two fields expresses in a single structure the different way to embed the two fields in a common extension field. Compositum of fields First, one defines the notion of the compositum of fields. This construction occurs frequently in field theory. The idea behind the compositum is to make the smallest field containing two other fields. In order to formally define the compositum, one must first specify a tower of fields. Let ''k'' be a field and ''L'' and ''K'' be two extensions of ''k''. The compositum, denoted ''K.L'', is defined to be K.L = k(K \cup L) where ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]