HOME

TheInfoList



OR:

In mathematics, especially in algebraic geometry, the Beilinson regulator is the
Chern class In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since found applications in physics, Calabi–Y ...
map from
algebraic K-theory Algebraic ''K''-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called ''K''-groups. These are groups in the sense ...
to
Deligne cohomology In mathematics, Deligne cohomology is the hypercohomology of the Deligne complex of a complex manifold. It was introduced by Pierre Deligne in unpublished work in about 1972 as a cohomology theory for algebraic varieties that includes both ordina ...
: :K_n (X) \rightarrow \oplus_ H_D^ (X, \mathbf Q(p)). Here, ''X'' is a complex smooth
projective variety In algebraic geometry, a projective variety over an algebraically closed field ''k'' is a subset of some projective ''n''-space \mathbb^n over ''k'' that is the zero-locus of some finite family of homogeneous polynomials of ''n'' + 1 variables ...
, for example. It is named after
Alexander Beilinson Alexander A. Beilinson (born 1957) is the David and Mary Winton Green University professor at the University of Chicago and works on mathematics. His research has spanned representation theory, algebraic geometry and mathematical physics. In 1 ...
. The Beilinson regulator features in Beilinson's conjecture on
special values of L-functions In mathematics, the study of special values of L-functions is a subfield of number theory devoted to generalising formulae such as the Leibniz formula for pi, namely :1 \,-\, \frac \,+\, \frac \,-\, \frac \,+\, \frac \,-\, \cdots \;=\; \frac,\! ...
. The ''Dirichlet regulator'' map (used in the proof of
Dirichlet's unit theorem In mathematics, Dirichlet's unit theorem is a basic result in algebraic number theory due to Peter Gustav Lejeune Dirichlet. It determines the rank of the group of units in the ring of algebraic integers of a number field . The regulator i ...
) for the
ring of integers In mathematics, the ring of integers of an algebraic number field K is the ring of all algebraic integers contained in K. An algebraic integer is a root of a monic polynomial with integer coefficients: x^n+c_x^+\cdots+c_0. This ring is often d ...
\mathcal O_F of a
number field In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a ...
''F'' :\mathcal O_F^\times \rightarrow \mathbf R^, \ \ x \mapsto (\log , \sigma (x), )_\sigma is a particular case of the Beilinson regulator. (As usual, \sigma: F \subset \mathbf C runs over all complex embeddings of ''F'', where conjugate embeddings are considered equivalent.) Up to a factor 2, the Beilinson regulator is also generalization of the
Borel regulator Borel may refer to: People * Borel (author), 18th-century French playwright * Borel (1906–1967), pseudonym of the French actor Jacques Henri Cottance * Émile Borel (1871 – 1956), a French mathematician known for his founding work in the areas ...
.


References

* {{cite book, title=Beilinson's conjectures on special values of L-functions, year=1988, publisher=Academic Press, isbn=0-12-581120-9, editor=M. Rapoport, N. Schappacher and P. Schneider Algebraic geometry Algebraic K-theory