Browder Fixed-point Theorem
   HOME





Browder Fixed-point Theorem
The Browder fixed-point theorem is a refinement of the Banach fixed-point theorem for Uniformly convex space, uniformly convex Banach spaces. It asserts that if K is a nonempty convex set, convex closed bounded set in uniformly convex Banach space and f is a mapping of K into itself such that \, f(x)-f(y)\, \leq\, x-y\, (i.e. f is ''non-expansive''), then f has a fixed point (mathematics), fixed point. History Following the publication in 1965 of two independent versions of the theorem by Felix Browder and by William Arthur Kirk, William Kirk, a new proof of Michael Edelstein showed that, in a uniformly convex Banach space, every iterative sequence f^nx_0 of a non-expansive map f has a unique asymptotic center, which is a fixed point of f. (An ''asymptotic center'' of a sequence (x_k)_, if it exists, is a limit of the Chebyshev centers c_n for truncated sequences (x_k)_.) A stronger property than asymptotic center is Delta-convergence, Delta-limit of Teck-Cheong Lim, which in t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Banach Fixed-point Theorem
In mathematics, the Banach fixed-point theorem (also known as the contraction mapping theorem or contractive mapping theorem or Banach–Caccioppoli theorem) is an important tool in the theory of metric spaces; it guarantees the existence and uniqueness of fixed points of certain self-maps of metric spaces and provides a constructive method to find those fixed points. It can be understood as an abstract formulation of Picard's method of successive approximations. The theorem is named after Stefan Banach (1892–1945) who first stated it in 1922. Statement ''Definition.'' Let (X, d) be a metric space. Then a map T : X \to X is called a contraction mapping on ''X'' if there exists q \in empty complete metric space with a contraction mapping T : X \to X. Then ''T'' admits a unique Fixed point (mathematics)">fixed-point x^* in ''X'' (i.e. T(x^*) = x^*). Furthermore, x^* can be found as follows: start with an arbitrary element x_0 \in X and define a sequence (x_n)_ by x_n = T(x_) for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Uniformly Convex Space
In mathematics, uniformly convex spaces (or uniformly rotund spaces) are common examples of reflexive Banach spaces. The concept of uniform convexity was first introduced by James A. Clarkson in 1936. Definition A uniformly convex space is a normed vector space such that, for every 00 such that for any two vectors with \, x\, = 1 and \, y\, = 1, the condition :\, x-y\, \geq\varepsilon implies that: :\left\, \frac\right\, \leq 1-\delta. Intuitively, the center of a line segment inside the unit ball must lie deep inside the unit ball unless the segment is short. Properties * The unit sphere can be replaced with the closed unit ball in the definition. Namely, a normed vector space X is uniformly convex if and only if for every 00 so that, for any two vectors x and y in the closed unit ball (i.e. \, x\, \le 1 and \, y\, \le 1 ) with \, x-y\, \ge \varepsilon , one has \left\, \right\, \le 1-\delta (note that, given \varepsilon , the corresponding value of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Convex Set
In geometry, a set of points is convex if it contains every line segment between two points in the set. For example, a solid cube (geometry), cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex. The boundary (topology), boundary of a convex set in the plane is always a convex curve. The intersection of all the convex sets that contain a given subset of Euclidean space is called the convex hull of . It is the smallest convex set containing . A convex function is a real-valued function defined on an interval (mathematics), interval with the property that its epigraph (mathematics), epigraph (the set of points on or above the graph of a function, graph of the function) is a convex set. Convex minimization is a subfield of mathematical optimization, optimization that studies the problem of minimizing convex functions over convex sets. The branch of mathematics devoted to the study of properties of convex sets and convex f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Banach Space
In mathematics, more specifically in functional analysis, a Banach space (, ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space. Banach spaces are named after the Polish mathematician Stefan Banach, who introduced this concept and studied it systematically in 1920–1922 along with Hans Hahn and Eduard Helly. Maurice René Fréchet was the first to use the term "Banach space" and Banach in turn then coined the term " Fréchet space". Banach spaces originally grew out of the study of function spaces by Hilbert, Fréchet, and Riesz earlier in the century. Banach spaces play a central role in functional analysis. In other areas of analysis, the spaces under study are often Banach spaces. Definition A Banach space is a complete nor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


picture info

Fixed Point (mathematics)
In mathematics, a fixed point (sometimes shortened to fixpoint), also known as an invariant point, is a value that does not change under a given transformation (mathematics), transformation. Specifically, for function (mathematics), functions, a fixed point is an element that is mapped to itself by the function. Any set of fixed points of a transformation is also an invariant set. Fixed point of a function Formally, is a fixed point of a function if belongs to both the domain of a function, domain and the codomain of , and . In particular, cannot have any fixed point if its domain is disjoint from its codomain. If is defined on the real numbers, it corresponds, in graphical terms, to a curve in the Euclidean plane, and each fixed-point corresponds to an intersection of the curve with the line , cf. picture. For example, if is defined on the real numbers by f(x) = x^2 - 3 x + 4, then 2 is a fixed point of , because . Not all functions have fixed points: for example, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Felix Browder
Felix Earl Browder (; July 31, 1927 – December 10, 2016) was an American mathematician known for his work in nonlinear functional analysis. He received the National Medal of Science in 1999 and was President of the American Mathematical Society until 2000. His two younger brothers also became notable mathematicians, William Browder (an algebraic topologist) and Andrew Browder (a specialist in function algebras). Early life and education Felix Earl Browder was born in 1927 in Moscow, Russia, while his American father Earl Browder, born in Wichita, Kansas, was living and working there. He had gone to the Soviet Union in 1927. His mother was Raissa Berkmann, a Russian Jewish woman from St. Petersburg whom Browder met and married while living in the Soviet Union. As a child, Felix Browder moved with his family to the United States, where his father Earl Browder for a time was head of the American Communist Party and ran for US president in 1936 and 1940. A 1999 book by Alex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]




William Arthur Kirk
William Arthur ("Art") Kirk was an American mathematician. His research interests include nonlinear functional analysis, the geometry of Banach spaces and metric spaces. In particular, he made notable contributions to the fixed point theory of metric spaces; for example, he is one of the two namesakes of the Caristi-Kirk fixed point theorem of 1976. He is also known for the Kirk theorem of 1964. He completed his PhD, entitled "Metrization of Surface Curvature", at the University of Missouri in August 1962 under the supervision of Leonard Blumenthal. He then became an assistant professor of mathematics at the University of California, Riverside from 1962 to 1967. Starting in 1967 he worked at the University of Iowa, as a full professor of mathematics since 1971 and as department chair from 1985 to 1991. He held an honorary doctorate from Maria Curie-Skłodowska University Maria Curie-Skłodowska University (MCSU) (, UMCS) is a public research university, in Lublin, Poland. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]


Chebyshev Center
In geometry, the Chebyshev center of a bounded set Q having non-empty interior is the center of the minimal-radius ball enclosing the entire set Q, or alternatively (and non-equivalently) the center of largest inscribed ball of Q. In the field of parameter estimation, the Chebyshev center approach tries to find an estimator \hat x for x given the feasibility set Q , such that \hat x minimizes the worst possible estimation error for x (e.g. best worst case). Mathematical representation There exist several alternative representations for the Chebyshev center. Consider the set Q and denote its Chebyshev center by \hat. \hat can be computed by solving: : \min_ \left\ with respect to the Euclidean norm \, \cdot\, , or alternatively by solving: : \operatorname \max_ \left\, x - \hat x \right\, ^2. Despite these properties, finding the Chebyshev center may be a hard numerical optimization problem. For example, in the second representation above, the inner maximization ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   [Amazon]



MORE