HOME
*





Brauer–Suzuki Theorem
In mathematics, the Brauer–Suzuki theorem, proved by , , , states that if a finite group has a generalized quaternion Sylow 2-subgroup and no non-trivial normal subgroups of odd order, then the group has a center of order 2. In particular, such a group cannot be simple. A generalization of the Brauer–Suzuki theorem is given by Glauberman's Z* theorem In mathematics, George Glauberman's Z* theorem is stated as follows: Z* theorem: Let ''G'' be a finite group, with ''O''(''G'') being its maximal normal subgroup of odd order. If ''T'' is a Sylow 2-subgroup of ''G'' containing an involution no .... References * * * gives a detailed proof of the Brauer–Suzuki theorem. * Theorems about finite groups {{Abstract-algebra-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Group
Finite is the opposite of infinite. It may refer to: * Finite number (other) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marked for person and/or tense or aspect * "Finite", a song by Sara Groves from the album '' Invisible Empires'' See also * * Nonfinite (other) Nonfinite is the opposite of finite * a nonfinite verb is a verb that is not capable of serving as the main verb in an independent clause * a non-finite clause In linguistics, a non-finite clause is a dependent or embedded clause that represen ... {{disambiguation fr:Fini it:Finito ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Generalized Quaternion Group
In group theory, the quaternion group Q8 (sometimes just denoted by Q) is a non-abelian group of order eight, isomorphic to the eight-element subset \ of the quaternions under multiplication. It is given by the group presentation :\mathrm_8 = \langle \bar,i,j,k \mid \bar^2 = e, \;i^2 = j^2 = k^2 = ijk = \bar \rangle , where ''e'' is the identity element and commutes with the other elements of the group. Another presentation of Q8 is :\mathrm_8 = \langle a,b \mid a^4 = e, a^2 = b^2, ba = a^b\rangle. Compared to dihedral group The quaternion group Q8 has the same order as the dihedral group D4, but a different structure, as shown by their Cayley and cycle graphs: In the diagrams for D4, the group elements are marked with their action on a letter F in the defining representation R2. The same cannot be done for Q8, since it has no faithful representation in R2 or R3. D4 can be realized as a subset of the split-quaternions in the same way that Q8 can be viewed as a sub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sylow Subgroup
In mathematics, specifically in the field of finite group theory, the Sylow theorems are a collection of theorems named after the Norwegian mathematician Peter Ludwig Sylow that give detailed information about the number of subgroups of fixed order that a given finite group contains. The Sylow theorems form a fundamental part of finite group theory and have very important applications in the classification of finite simple groups. For a prime number p, a Sylow ''p''-subgroup (sometimes ''p''-Sylow subgroup) of a group G is a maximal p-subgroup of G, i.e., a subgroup of G that is a ''p''-group (meaning its cardinality is a power of p, or equivalently, the order of every group element is a power of p) that is not a proper subgroup of any other p-subgroup of G. The set of all Sylow p-subgroups for a given prime p is sometimes written \text_p(G). The Sylow theorems assert a partial converse to Lagrange's theorem. Lagrange's theorem states that for any finite group G the order ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Subgroup
In abstract algebra, a normal subgroup (also known as an invariant subgroup or self-conjugate subgroup) is a subgroup that is invariant under conjugation by members of the group of which it is a part. In other words, a subgroup N of the group G is normal in G if and only if gng^ \in N for all g \in G and n \in N. The usual notation for this relation is N \triangleleft G. Normal subgroups are important because they (and only they) can be used to construct quotient groups of the given group. Furthermore, the normal subgroups of G are precisely the kernels of group homomorphisms with domain G, which means that they can be used to internally classify those homomorphisms. Évariste Galois was the first to realize the importance of the existence of normal subgroups. Definitions A subgroup N of a group G is called a normal subgroup of G if it is invariant under conjugation; that is, the conjugation of an element of N by an element of G is always in N. The usual notation for this re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parity (mathematics)
In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is a multiple of two, and odd if it is not.. For example, −4, 0, 82 are even because \begin -2 \cdot 2 &= -4 \\ 0 \cdot 2 &= 0 \\ 41 \cdot 2 &= 82 \end By contrast, −3, 5, 7, 21 are odd numbers. The above definition of parity applies only to integer numbers, hence it cannot be applied to numbers like 1/2 or 4.201. See the section "Higher mathematics" below for some extensions of the notion of parity to a larger class of "numbers" or in other more general settings. Even and odd numbers have opposite parities, e.g., 22 (even number) and 13 (odd number) have opposite parities. In particular, the parity of zero is even. Any two consecutive integers have opposite parity. A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd. That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; otherwis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Order (group Theory)
In mathematics, the order of a finite group is the number of its elements. If a group is not finite, one says that its order is ''infinite''. The ''order'' of an element of a group (also called period length or period) is the order of the subgroup generated by the element. If the group operation is denoted as a multiplication, the order of an element of a group, is thus the smallest positive integer such that , where denotes the identity element of the group, and denotes the product of copies of . If no such exists, the order of is infinite. The order of a group is denoted by or , and the order of an element is denoted by or , instead of \operatorname(\langle a\rangle), where the brackets denote the generated group. Lagrange's theorem states that for any subgroup of a finite group , the order of the subgroup divides the order of the group; that is, is a divisor of . In particular, the order of any element is a divisor of . Example The symmetric group S3 has th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Center (group Theory)
In abstract algebra, the center of a group, , is the set of elements that commute with every element of . It is denoted , from German '' Zentrum,'' meaning ''center''. In set-builder notation, :. The center is a normal subgroup, . As a subgroup, it is always characteristic, but is not necessarily fully characteristic. The quotient group, , is isomorphic to the inner automorphism group, . A group is abelian if and only if . At the other extreme, a group is said to be centerless if is trivial; i.e., consists only of the identity element. The elements of the center are sometimes called central. As a subgroup The center of ''G'' is always a subgroup of . In particular: # contains the identity element of , because it commutes with every element of , by definition: , where is the identity; # If and are in , then so is , by associativity: for each ; i.e., is closed; # If is in , then so is as, for all in , commutes with : . Furthermore, the center of is always ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Simple Group
SIMPLE Group Limited is a conglomeration of separately run companies that each has its core area in International Consulting. The core business areas are Legal Services, Fiduciary Activities, Banking Intermediation and Corporate Service. The date of incorporation is listed as 1999 by Companies House of Gibraltar, who class it as a holding company; however it is understood that SIMPLE Group's business and trading activities date to the second part of the 90s, probably as an incorporated body. SIMPLE Group Limited is a conglomerate that cultivate secrecy, they are not listed on any Stock Exchange and the group is owned by a complicated series of offshore trust An offshore trust is a conventional trust that is formed under the laws of an offshore jurisdiction. Generally offshore trusts are similar in nature and effect to their onshore counterparts; they involve a settlor transferring (or 'settling') a ...s. The Sunday Times stated that SIMPLE Group's interests could be eval ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


George Glauberman
George Isaac Glauberman (born 1941) is a mathematician at the University of Chicago who works on finite simple groups. He proved the ZJ theorem and the Z* theorem. Born in New York City on March 3, 1941, Glauberman did his undergraduate studies at the Polytechnic Institute of Brooklyn, graduating in 1961, and earned a master's degree from Harvard University in 1962. He obtained his PhD degree from the University of Wisconsin–Madison in 1965, under the supervision of Richard Bruck. He has had 22 PhD students, including Ahmed Chalabi and Peter Landrock, the president and founder of Cryptomathic. He has co-authored with J. L. Alperin, Simon P. Norton, Zvi Arad, and Justin Lynd. In 1970 he was an invited speaker at the International Congress of Mathematicians at Nice. In 2012 he became a fellow of the American Mathematical Society.
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Z* Theorem
In mathematics, George Glauberman's Z* theorem is stated as follows: Z* theorem: Let ''G'' be a finite group, with ''O''(''G'') being its maximal normal subgroup of odd order. If ''T'' is a Sylow 2-subgroup of ''G'' containing an involution not conjugate in ''G'' to any other element of ''T'', then the involution lies in ''Z*''(''G''), which is the inverse image in ''G'' of the center of ''G''/''O''(''G''). This generalizes the Brauer–Suzuki theorem (and the proof uses the Brauer–Suzuki theorem to deal with some small cases). Details The original paper gave several criteria for an element to lie outside Its theorem 4 states: For an element ''t'' in ''T'', it is necessary and sufficient for ''t'' to lie outside ''Z*''(''G'') that there is some ''g'' in ''G'' and abelian subgroup ''U'' of ''T'' satisfying the following properties: # ''g'' normalizes both ''U'' and the centralizer ''CT''(''U''), that is ''g'' is contained in ''N'' = ''NG''(''U'') ∩ ''NG''(''CT''(''U'')) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Journal Of Algebra
''Journal of Algebra'' (ISSN 0021-8693) is an international mathematical research journal in algebra. An imprint of Academic Press, it is published by Elsevier. ''Journal of Algebra'' was founded by Graham Higman, who was its editor from 1964 to 1984. From 1985 until 2000, Walter Feit served as its editor-in-chief. In 2004, ''Journal of Algebra'' announced (vol. 276, no. 1 and 2) the creation of a new section on computational algebra, with a separate editorial board. The first issue completely devoted to computational algebra was vol. 292, no. 1 (October 2005). The Editor-in-Chief of the ''Journal of Algebra'' is Michel Broué, Université Paris Diderot, and Gerhard Hiß, Rheinisch-Westfälische Technische Hochschule Aachen ( RWTH) is Editor of the computational algebra section. See also *Susan Montgomery M. Susan Montgomery (born 2 April 1943 in Lansing, MI) is a distinguished American mathematician whose current research interests concern noncommutative algebras: in parti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]