HOME
*





Brauer Algebra
In mathematics, a Brauer algebra is an associative algebra introduced by Richard Brauer in the context of the representation theory of the orthogonal group. It plays the same role that the symmetric group does for the representation theory of the general linear group in Schur–Weyl duality. Structure The Brauer algebra \mathfrak_n(\delta) is a \mathbbdelta/math>-algebra depending on the choice of a positive integer n. Here \delta is an indeterminate, but in practice \delta is often specialised to the dimension of the fundamental representation of an orthogonal group O(\delta). The Brauer algebra has the dimension :\dim\mathfrak_n(\delta) = \frac = (2n-1)!! = (2n-1)(2n-3)\cdots 5\cdot 3\cdot 1 Diagrammatic definition A basis of \mathfrak_n(\delta) consists of all pairings on a set of 2n elements X_1, ..., X_n, Y_1, ..., Y_n (that is, all perfect matchings of a complete graph K_n: any two of the 2n elements may be matched to each other, regardless of their symbols). The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partition Algebra
The partition algebra is an associative algebra with a basis of set-partition diagrams and multiplication given by diagram concatenation. Its subalgebras include diagram algebras such as the Brauer algebra, the Temperley-Lieb algebra, or the group algebra of the symmetric group. Representations of the partition algebra are built from sets of diagrams and from representations of the symmetric group. Definition Diagrams A partition of 2k elements labelled 1,\bar 1, 2,\bar 2,\dots, k,\bar k is represented as a diagram, with lines connecting elements in the same subset. In the following example, the subset \ gives rise to the lines \bar 1 - \bar 4, \bar 4 -\bar 5, \bar 5 - 6, and could equivalently be represented by the lines \bar 1- 6, \bar 4 - 6, \bar 5 - 6, \bar 1 - \bar 5 (for instance). For n\in \mathbb and k\in \mathbb^*, the partition algebra P_k(n) is defined by a \mathbb-basis made of partitions, and a multiplication given by diagram concatenation. The concatenated ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Associative Algebra
In mathematics, an associative algebra ''A'' is an algebraic structure with compatible operations of addition, multiplication (assumed to be associative), and a scalar multiplication by elements in some field ''K''. The addition and multiplication operations together give ''A'' the structure of a ring; the addition and scalar multiplication operations together give ''A'' the structure of a vector space over ''K''. In this article we will also use the term ''K''-algebra to mean an associative algebra over the field ''K''. A standard first example of a ''K''-algebra is a ring of square matrices over a field ''K'', with the usual matrix multiplication. A commutative algebra is an associative algebra that has a commutative multiplication, or, equivalently, an associative algebra that is also a commutative ring. In this article associative algebras are assumed to have a multiplicative identity, denoted 1; they are sometimes called unital associative algebras for clarification. I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Trace (linear Algebra)
In linear algebra, the trace of a square matrix , denoted , is defined to be the sum of elements on the main diagonal (from the upper left to the lower right) of . The trace is only defined for a square matrix (). It can be proved that the trace of a matrix is the sum of its (complex) eigenvalues (counted with multiplicities). It can also be proved that for any two matrices and . This implies that similar matrices have the same trace. As a consequence one can define the trace of a linear operator mapping a finite-dimensional vector space into itself, since all matrices describing such an operator with respect to a basis are similar. The trace is related to the derivative of the determinant (see Jacobi's formula). Definition The trace of an square matrix is defined as \operatorname(\mathbf) = \sum_^n a_ = a_ + a_ + \dots + a_ where denotes the entry on the th row and th column of . The entries of can be real numbers or (more generally) complex numbers. The trace is not de ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Birman–Wenzl Algebra
In mathematics, the Birman–Murakami–Wenzl (BMW) algebra, introduced by and , is a two-parameter family of algebras \mathrm_n(\ell,m) of dimension 1\cdot 3\cdot 5\cdots (2n-1) having the Hecke algebra of the symmetric group as a quotient. It is related to the Kauffman polynomial of a link. It is a deformation of the Brauer algebra in much the same way that Hecke algebras are deformations of the group algebra of the symmetric group. Definition For each natural number ''n'', the BMW algebra \mathrm_n(\ell,m) is generated by G_1^,G_2^,\dots , G_^,E_1,E_2,\dots ,E_ and relations: : G_iG_j=G_jG_i, \mathrm \left\vert i-j \right\vert \geqslant 2, :G_i G_ G_i=G_ G_i G_,         E_i E_ E_i=E_i, : G_i + ^=m(1+E_i), : G_ G_i E_ = E_i G_ G_i = E_i E_,      G_ E_i G_ =^ E_ ^, : G_ E_i E_=^ E_,      E_ E_i G_ =E_ ^, : G_i E_i= E_i G_i = l^ E_i,      E_i G_ E_i =l E_i. These relations impl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Symplectic Group
In mathematics, the name symplectic group can refer to two different, but closely related, collections of mathematical groups, denoted and for positive integer ''n'' and field F (usually C or R). The latter is called the compact symplectic group and is also denoted by \mathrm(n). Many authors prefer slightly different notations, usually differing by factors of . The notation used here is consistent with the size of the most common matrices which represent the groups. In Cartan's classification of the simple Lie algebras, the Lie algebra of the complex group is denoted , and is the compact real form of . Note that when we refer to ''the'' (compact) symplectic group it is implied that we are talking about the collection of (compact) symplectic groups, indexed by their dimension . The name "symplectic group" is due to Hermann Weyl as a replacement for the previous confusing names (line) complex group and Abelian linear group, and is the Greek analog of "complex". The metaplect ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Partition (number Theory)
In number theory and combinatorics, a partition of a positive integer , also called an integer partition, is a way of writing as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. (If order matters, the sum becomes a composition.) For example, can be partitioned in five distinct ways: : : : : : The order-dependent composition is the same partition as , and the two distinct compositions and represent the same partition as . A summand in a partition is also called a part. The number of partitions of is given by the partition function . So . The notation means that is a partition of . Partitions can be graphically visualized with Young diagrams or Ferrers diagrams. They occur in a number of branches of mathematics and physics, including the study of symmetric polynomials and of the symmetric group and in group representation theory in general. Examples The seven partitions of 5 are: * 5 * 4 + 1 * 3 + ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Module (mathematics)
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a ring. The concept of ''module'' generalizes also the notion of abelian group, since the abelian groups are exactly the modules over the ring of integers. Like a vector space, a module is an additive abelian group, and scalar multiplication is distributive over the operation of addition between elements of the ring or module and is compatible with the ring multiplication. Modules are very closely related to the representation theory of groups. They are also one of the central notions of commutative algebra and homological algebra, and are used widely in algebraic geometry and algebraic topology. Introduction and definition Motivation In a vector space, the set of scalars is a field and acts on the vectors by scalar multiplication, subject to certain axioms such as the distributive law. In a module, the scalars need only be a ring, so the module conc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tensor Product
In mathematics, the tensor product V \otimes W of two vector spaces and (over the same field) is a vector space to which is associated a bilinear map V\times W \to V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of V \otimes W denoted v \otimes w. An element of the form v \otimes w is called the tensor product of and . An element of V \otimes W is a tensor, and the tensor product of two vectors is sometimes called an ''elementary tensor'' or a ''decomposable tensor''. The elementary tensors span V \otimes W in the sense that every element of V \otimes W is a sum of elementary tensors. If bases are given for and , a basis of V \otimes W is formed by all tensor products of a basis element of and a basis element of . The tensor product of two vector spaces captures the properties of all bilinear maps in the sense that a bilinear map from V\times W into another vector space factors uniquely through a linear map V\otimes W\to Z (see Universal property). Tenso ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called ''vector axioms''. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space. Vector spaces generalize Euclidean vectors, which allow modeling of physical quantities, such as forces and velocity, that have not only a magnitude, but also a direction. The concept of vector spaces is fundamental for linear algebra, together with the concept of matrix, which allows computing in vector spaces. This provides a concise and synthetic way for manipulating and studying systems of linear eq ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hook Length Formula
In combinatorial mathematics, the hook length formula is a formula for the number of standard Young tableaux whose shape is a given Young diagram. It has applications in diverse areas such as representation theory, probability, and algorithm analysis; for example, the problem of longest increasing subsequences. A related formula gives the number of semi-standard Young tableaux, which is a specialization of a Schur polynomial. Definitions and statement Let \lambda=(\lambda_1\geq \cdots\geq \lambda_k) be a partition of n=\lambda_1+\cdots+\lambda_k. It is customary to interpret \lambda graphically as a Young diagram, namely a left-justified array of square cells with k rows of lengths \lambda_1,\ldots,\lambda_k. A (standard) Young tableau of shape \lambda is a filling of the n cells of the Young diagram with all the integers \, with no repetition, such that each row and each column form increasing sequences. For the cell in position (i,j), in the ith row and jth column, the hook H_ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Double Factorial
In mathematics, the double factorial or semifactorial of a number , denoted by , is the product of all the integers from 1 up to that have the same parity (odd or even) as . That is, :n!! = \prod_^ (n-2k) = n (n-2) (n-4) \cdots. For even , the double factorial is :n!! = \prod_^\frac (2k) = n(n-2)(n-4)\cdots 4\cdot 2 \,, and for odd it is :n!! = \prod_^\frac (2k-1) = n(n-2)(n-4)\cdots 3\cdot 1 \,. For example, . The zero double factorial as an empty product. The sequence of double factorials for even = starts as : 1, 2, 8, 48, 384, 3840, 46080, 645120,... The sequence of double factorials for odd = starts as : 1, 3, 15, 105, 945, 10395, 135135,... The term odd factorial is sometimes used for the double factorial of an odd number. History and usage In a 1902 paper, the physicist Arthur Schuster wrote: states that the double factorial was originally introduced in order to simplify the expression of certain trigonometric integrals that arise in the derivation of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]