HOME
*





Bratteli–Vershik Diagram
In mathematics, a Bratteli–Veršik diagram is an ordered, essentially simple Bratteli diagram (''V'', ''E'') with a homeomorphism on the set of all infinite paths called the Veršhik transformation. It is named after Ola Bratteli and Anatoly Vershik. Definition Let ''X'' =  be the set of all paths in the essentially simple Bratteli diagram (''V'', ''E''). Let ''E''min be the set of all minimal edges in ''E'', similarly let ''E''max be the set of all maximal edges. Let ''y'' be the unique infinite path in ''E''max. (Diagrams which possess a unique infinite path are called "essentially simple".) The Veršhik transformation is a homeomorphism φ : ''X'' → ''X'' defined such that φ(''x'') is the unique minimal path if ''x'' = ''y''. Otherwise ''x'' = (''e''1, ''e''2,...) , ''e''''i'' ∈ ''E''''i'' where at least one ''e''''i'' ∉ ''E''max. Let ''k'' be the smallest such integer. Then φ(''x ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bratteli Diagram
In mathematics, a Bratteli diagram is a combinatorial structure: a Graph (discrete mathematics), graph composed of vertices labelled by positive integers ("level") and unoriented edges between vertices having levels differing by one. The notion was introduced by Ola Bratteli in 1972 in the theory of operator algebras to describe directed sequences of finite-dimensional algebras: it played an important role in Elliott's classification of approximately finite-dimensional C*-algebra, AF-algebras and the theory of subfactors. Subsequently Anatoly Vershik associated dynamical systems with infinite paths in such graphs. Definition A Bratteli diagram is given by the following objects: * A sequence of sets ''V''''n'' ('the vertices at level ''n'' ') labeled by positive integer set N. In some literature each element v of ''V''''n'' is accompanied by a positive integer ''b''''v'' > 0. * A sequence of sets ''E''''n'' ('the edges from level ''n'' to ''n'' + 1 ') ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homeomorphism
In the mathematical field of topology, a homeomorphism, topological isomorphism, or bicontinuous function is a bijective and continuous function between topological spaces that has a continuous inverse function. Homeomorphisms are the isomorphisms in the category of topological spaces—that is, they are the mappings that preserve all the topological properties of a given space. Two spaces with a homeomorphism between them are called homeomorphic, and from a topological viewpoint they are the same. The word ''homeomorphism'' comes from the Greek words '' ὅμοιος'' (''homoios'') = similar or same and '' μορφή'' (''morphē'') = shape or form, introduced to mathematics by Henri Poincaré in 1895. Very roughly speaking, a topological space is a geometric object, and the homeomorphism is a continuous stretching and bending of the object into a new shape. Thus, a square and a circle are homeomorphic to each other, but a sphere and a torus are not. However, this desc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ola Bratteli
Ola Bratteli (24 October 1946 – 8 February 2015) was a Norwegian mathematician. He was a son of Trygve Bratteli and Randi Bratteli (née Larssen). He received a PhD degree in 1974. He was appointed as professor at the University of Trondheim in 1980 and at the University of Oslo in 1991. He was a member of the Norwegian Academy of Science and Letters. Selected works *with Derek W. Robinson: ''Operator Algebras and Quantum Statistical Mechanics'' (Springer-Verlag, 2 volumes, 1980) *''Derivations, Dissipations and Group Actions on C*-algebras'' (Springer-Verlag, 1986) *with Palle T. Jørgensen: ''Wavelets through a looking glass, the world of the spectrum'' (Birkhäuser, 2002) See also *Approximately finite-dimensional C*-algebra *Bratteli diagram *Bratteli–Vershik diagram In mathematics, a Bratteli–Veršik diagram is an ordered, essentially simple Bratteli diagram (''V'', ''E'') with a homeomorphism on the set of all infinite paths called the Veršhik transformati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Anatoly Vershik
Anatoly Moiseevich Vershik (russian: Анато́лий Моисе́евич Ве́ршик; born on 28 December 1933 in Leningrad) is a Soviet and Russian mathematician. He is most famous for his joint work with Sergei V. Kerov on representations of infinite symmetric groups and applications to the longest increasing subsequences. Biography Vershik studied at Leningrad State University, receiving his doctoral degree in 1974; his advisor was Vladimir Rokhlin. He works at the Steklov Institute of Mathematics and at Saint Petersburg State University. In 1998–2008 he was the president of the St. Petersburg Mathematical Society. In 2012 Vershik became a fellow of the American Mathematical Society.List of Fellows of the American Mathematical Society
retrieved 2013-08-29. In 2015, he has been elected a member ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Minor (graph Theory)
Minor may refer to: * Minor (law), a person under the age of certain legal activities. ** A person who has not reached the age of majority * Academic minor, a secondary field of study in undergraduate education Music theory *Minor chord ** Barbershop seventh chord or minor seventh chord *Minor interval *Minor key *Minor scale Mathematics * Minor (graph theory), the relation of one graph to another given certain conditions * Minor (linear algebra), the determinant of a certain submatrix People * Charles Minor (1835–1903), American college administrator * Charles A. Minor (21st-century), Liberian diplomat * Dan Minor (1909–1982), American jazz trombonist * Dave Minor (1922–1998), American basketball player * James T. Minor, US academic administrator and sociologist * Jerry Minor (born 1969), American actor, comedian and writer * Kyle Minor (born 1976), American writer * Mike Minor (actor) (born 1940), American actor * Mike Minor (baseball) (born 1987), American baseball p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Well-quasi-ordering
In mathematics, specifically order theory, a well-quasi-ordering or wqo is a quasi-ordering such that any infinite sequence of elements x_0, x_1, x_2, \ldots from X contains an increasing pair x_i \leq x_j with i x_2> \cdots) nor infinite sequences of ''pairwise incomparable'' elements. Hence a quasi-order (''X'', ≤) is wqo if and only if (''X'', <) is and has no infinite s.


Examples


[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equivalence Relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class. Notation Various notations are used in the literature to denote that two elements a and b of a set are equivalent with respect to an equivalence relation R; the most common are "a \sim b" and "", which are used when R is implicit, and variations of "a \sim_R b", "", or "" to specify R explicitly. Non-equivalence may be written "" or "a \not\equiv b". Definition A binary relation \,\sim\, on a set X is said to be an equivalence relation, if and only if it is reflexive, symmetric and transitive. That is, for all a, b, and c in X: * a \sim a ( ref ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Symmetric Relation
A symmetric relation is a type of binary relation. An example is the relation "is equal to", because if ''a'' = ''b'' is true then ''b'' = ''a'' is also true. Formally, a binary relation ''R'' over a set ''X'' is symmetric if: :\forall a, b \in X(a R b \Leftrightarrow b R a) , where the notation aRb means that (a,b)\in R. If ''R''T represents the converse of ''R'', then ''R'' is symmetric if and only if ''R'' = ''R''T. Symmetry, along with reflexivity and transitivity, are the three defining properties of an equivalence relation. Examples In mathematics * "is equal to" (equality) (whereas "is less than" is not symmetric) * "is comparable to", for elements of a partially ordered set * "... and ... are odd": :::::: Outside mathematics * "is married to" (in most legal systems) * "is a fully biological sibling of" * "is a homophone of" * "is co-worker of" * "is teammate of" Relationship to asymmetric and antisymmetric relations By definition, a nonempty relation cannot be bot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Topological Conjugacy
In mathematics, two functions are said to be topologically conjugate if there exists a homeomorphism that will conjugate the one into the other. Topological conjugacy, and related-but-distinct of flows, are important in the study of iterated functions and more generally dynamical systems, since, if the dynamics of one iterative function can be determined, then that for a topologically conjugate function follows trivially. To illustrate this directly: suppose that f and g are iterated functions, and there exists a homeomorphism h such that :g = h^ \circ f \circ h, so that f and g are topologically conjugate. Then one must have :g^n = h^ \circ f^n \circ h, and so the iterated systems are topologically conjugate as well. Here, \circ denotes function composition. Definition f\colon X \to X, g\colon Y \to Y, and h\colon Y \to X are continuous functions on topological spaces, X and Y. f being topologically semiconjugate to g means, by definition, that h is a surjection such t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dynamical System
In mathematics, a dynamical system is a system in which a Function (mathematics), function describes the time dependence of a Point (geometry), point in an ambient space. Examples include the mathematical models that describe the swinging of a clock pendulum, fluid dynamics, the flow of water in a pipe, the Brownian motion, random motion of particles in the air, and population dynamics, the number of fish each springtime in a lake. The most general definition unifies several concepts in mathematics such as ordinary differential equations and ergodic theory by allowing different choices of the space and how time is measured. Time can be measured by integers, by real number, real or complex numbers or can be a more general algebraic object, losing the memory of its physical origin, and the space may be a manifold or simply a Set (mathematics), set, without the need of a Differentiability, smooth space-time structure defined on it. At any given time, a dynamical system has a State ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Markov Odometer
In mathematics, a Markov odometer is a certain type of topological dynamical system. It plays a fundamental role in ergodic theory and especially in orbit theory of dynamical systems, since a theorem of H. Dye asserts that every ergodic nonsingular transformation is orbit-equivalent to a Markov odometer. The basic example of such system is the "nonsingular odometer", which is an additive topological group defined on the product space of discrete spaces, induced by addition defined as x \mapsto x+\underline, where \underline:=(1,0,0,\dots). This group can be endowed with the structure of a dynamical system; the result is a conservative dynamical system. The general form, which is called "Markov odometer", can be constructed through Bratteli–Vershik diagram to define ''Bratteli–Vershik compactum'' space together with a corresponding transformation. Nonsingular odometers Several kinds of non-singular odometers may be defined. These are sometimes referred to as adding machin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cambridge University Press
Cambridge University Press is the university press of the University of Cambridge. Granted letters patent by Henry VIII of England, King Henry VIII in 1534, it is the oldest university press A university press is an academic publishing house specializing in monographs and scholarly journals. Most are nonprofit organizations and an integral component of a large research university. They publish work that has been reviewed by schola ... in the world. It is also the King's Printer. Cambridge University Press is a department of the University of Cambridge and is both an academic and educational publisher. It became part of Cambridge University Press & Assessment, following a merger with Cambridge Assessment in 2021. With a global sales presence, publishing hubs, and offices in more than 40 Country, countries, it publishes over 50,000 titles by authors from over 100 countries. Its publishing includes more than 380 academic journals, monographs, reference works, school and uni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]