Borel Equivalence Relation
   HOME
*





Borel Equivalence Relation
In mathematics, a Borel equivalence relation on a Polish space ''X'' is an equivalence relation on ''X'' that is a Borel algebra, Borel subset of ''X'' × ''X'' (in the product topology). Formal definition Given Borel equivalence relations ''E'' and ''F'' on Polish spaces ''X'' and ''Y'' respectively, one says that ''E'' is ''Borel reducible'' to ''F'', in symbols ''E'' ≤B ''F'', if and only if there is a Borel function : Θ : ''X'' → ''Y'' such that for all ''x'',''x''' ∈ ''X'', one has :''x'' ''E'' ''x''' ⇔ Θ(''x'') ''F'' Θ(''x'''). Conceptually, if ''E'' is Borel reducible to ''F'', then ''E'' is "not more complicated" than ''F'', and the quotient space ''X''/''E'' has a lesser or equal "Borel cardinality" than ''Y''/''F'', where "Borel cardinality" is like cardinality except for a definability restriction on the witnessing mapping. Kuratowski's theorem A measure space ''X'' is called a standard Borel space if it is Borel-isomorphic to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Polish Space
In the mathematical discipline of general topology, a Polish space is a separable completely metrizable topological space; that is, a space homeomorphic to a complete metric space that has a countable dense subset. Polish spaces are so named because they were first extensively studied by Polish topologists and logicians— Sierpiński, Kuratowski, Tarski and others. However, Polish spaces are mostly studied today because they are the primary setting for descriptive set theory, including the study of Borel equivalence relations. Polish spaces are also a convenient setting for more advanced measure theory, in particular in probability theory. Common examples of Polish spaces are the real line, any separable Banach space, the Cantor space, and the Baire space. Additionally, some spaces that are not complete metric spaces in the usual metric may be Polish; e.g., the open interval (0, 1) is Polish. Between any two uncountable Polish spaces, there is a Borel isomorphism; that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Equivalence Relation
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relation provides a partition of the underlying set into disjoint equivalence classes. Two elements of the given set are equivalent to each other if and only if they belong to the same equivalence class. Notation Various notations are used in the literature to denote that two elements a and b of a set are equivalent with respect to an equivalence relation R; the most common are "a \sim b" and "", which are used when R is implicit, and variations of "a \sim_R b", "", or "" to specify R explicitly. Non-equivalence may be written "" or "a \not\equiv b". Definition A binary relation \,\sim\, on a set X is said to be an equivalence relation, if and only if it is reflexive, symmetric and transitive. That is, for all a, b, and c in X: * a \sim a ( ref ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borel Algebra
In mathematics, a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets are named after Émile Borel. For a topological space ''X'', the collection of all Borel sets on ''X'' forms a σ-algebra, known as the Borel algebra or Borel σ-algebra. The Borel algebra on ''X'' is the smallest σ-algebra containing all open sets (or, equivalently, all closed sets). Borel sets are important in measure theory, since any measure defined on the open sets of a space, or on the closed sets of a space, must also be defined on all Borel sets of that space. Any measure defined on the Borel sets is called a Borel measure. Borel sets and the associated Borel hierarchy also play a fundamental role in descriptive set theory. In some contexts, Borel sets are defined to be generated by the compact sets of the topological space, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Product Topology
In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-seeming, topology called the box topology, which can also be given to a product space and which agrees with the product topology when the product is over only finitely many spaces. However, the product topology is "correct" in that it makes the product space a categorical product of its factors, whereas the box topology is too fine; in that sense the product topology is the natural topology on the Cartesian product. Definition Throughout, I will be some non-empty index set and for every index i \in I, let X_i be a topological space. Denote the Cartesian product of the sets X_i by X := \prod X_ := \prod_ X_i and for every index i \in I, denote the i-th by \begin p_i :\;&& \prod_ X_j &&\;\to\; & X_i \\ .3ex && \left(x_j\r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Borel Function
In mathematics and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable. This is in direct analogy to the definition that a continuous function between topological spaces preserves the topological structure: the preimage of any open set is open. In real analysis, measurable functions are used in the definition of the Lebesgue integral. In probability theory, a measurable function on a probability space is known as a random variable. Formal definition Let (X,\Sigma) and (Y,\Tau) be measurable spaces, meaning that X and Y are sets equipped with respective \sigma-algebras \Sigma and \Tau. A function f:X\to Y is said to be measurable if for every E\in \Tau the pre-image of E under f is in \Sigma; that is, for all E \in \Tau f^(E) := \ \in \Sigma. That is, \sigma (f)\subseteq\Sigma, where \sigma (f) is the σ-algebra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cardinality
In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized to infinite sets, which allows one to distinguish between different types of infinity, and to perform arithmetic on them. There are two approaches to cardinality: one which compares sets directly using bijections and injections, and another which uses cardinal numbers. The cardinality of a set is also called its size, when no confusion with other notions of size is possible. The cardinality of a set A is usually denoted , A, , with a vertical bar on each side; this is the same notation as absolute value, and the meaning depends on context. The cardinality of a set A may alternatively be denoted by n(A), , \operatorname(A), or \#A. History A crude sense of cardinality, an awareness that groups of things or events compare with other grou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Measure Space
A measure space is a basic object of measure theory, a branch of mathematics that studies generalized notions of volumes. It contains an underlying set, the subsets of this set that are feasible for measuring (the -algebra) and the method that is used for measuring (the measure). One important example of a measure space is a probability space. A measurable space consists of the first two components without a specific measure. Definition A measure space is a triple (X, \mathcal A, \mu), where * X is a set * \mathcal A is a -algebra on the set X * \mu is a measure on (X, \mathcal) In other words, a measure space consists of a measurable space (X, \mathcal) together with a measure on it. Example Set X = \. The \sigma-algebra on finite sets such as the one above is usually the power set, which is the set of all subsets (of a given set) and is denoted by \wp(\cdot). Sticking with this convention, we set \mathcal = \wp(X) In this simple case, the power set can be written down ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Standard Borel Space
In mathematics, a standard Borel space is the Borel space associated to a Polish space. Discounting Borel spaces of discrete Polish spaces, there is, up to isomorphism of measurable spaces, only one standard Borel space. Formal definition A measurable space (X, \Sigma) is said to be "standard Borel" if there exists a metric on X that makes it a complete separable metric space in such a way that \Sigma is then the Borel σ-algebra. Standard Borel spaces have several useful properties that do not hold for general measurable spaces. Properties * If (X, \Sigma) and (Y, T) are standard Borel then any bijective measurable mapping f : (X, \Sigma) \to (Y, \Tau) is an isomorphism (that is, the inverse mapping is also measurable). This follows from Souslin's theorem, as a set that is both analytic and coanalytic is necessarily Borel. * If (X, \Sigma) and (Y, T) are standard Borel spaces and f : X \to Y then f is measurable if and only if the graph of f is Borel. * The product and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hyperfinite Equivalence Relation
In descriptive set theory and related areas of mathematics, a hyperfinite equivalence relation on a standard Borel space X is a Borel equivalence relation ''E'' with countable classes, that can, in a certain sense, be approximated by Borel equivalence relations that have finite classes. Definitions Definition 1. Let ''X'' be a standard Borel space, that is; it is a measurable space which arises by equipping a Polish space ''X'' with its σ-algebra of Borel subsets (and forgetting the topology). Let ''E'' be an equivalence relation on ''X''. We will say that ''E'' is Borel if ''E'' is a Borel subset of the cartesian product of ''X'' with itself, when equipped with the product σ-algebra. We will say that ''E'' is finite (respectively, countable) if E has finite (respectively, countable) classes. The above names might be misleading, since if ''X'' is an uncountable standard Borel space, the equivalence relation will be uncountable when considered as a set of ordered pairs from ''X'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Vladimir Kanovei
Vladimir G. Kanovei (born 1951) is a Russian mathematician working at the Institute for Information Transmission Problems in Moscow, Russia. His interests include mathematical logic and foundations, as well as mathematical history. Selected publications *. *Kanovei, Vladimir; Reeken, Michael; Nonstandard analysis, axiomatically. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2004. xvi+408 pp. *Kanovei, Vladimir; Borel equivalence relations. Structure and classification. University Lecture Series, 44. American Mathematical Society, Providence, RI, 2008. x+240 pp. *Kanoveĭ, V.; Reeken, M.; On Ulam's problem concerning the stability of approximate homomorphisms. (Russian) Tr. Mat. Inst. Steklova 231 (2000), Din. Sist., Avtom. i Beskon. Gruppy, 249–283; translation in Proc. Steklov Inst. Math. 2000, no. 4 (231), 238–270 *Kanoveĭ, V. G.; Lyubetskiĭ, V. A.; On some classical problems in descriptive set theory. (Russian) Uspekhi Mat. Nauk 58 (2003), no. 5(353), ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Descriptive Set Theory
In mathematical logic, descriptive set theory (DST) is the study of certain classes of "well-behaved" subsets of the real line and other Polish spaces. As well as being one of the primary areas of research in set theory, it has applications to other areas of mathematics such as functional analysis, ergodic theory, the study of operator algebras and group actions, and mathematical logic. Polish spaces Descriptive set theory begins with the study of Polish spaces and their Borel sets. A Polish space is a second-countable topological space that is metrizable with a complete metric. Heuristically, it is a complete separable metric space whose metric has been "forgotten". Examples include the real line \mathbb, the Baire space \mathcal, the Cantor space \mathcal, and the Hilbert cube I^. Universality properties The class of Polish spaces has several universality properties, which show that there is no loss of generality in considering Polish spaces of certain restricted form ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]