HOME
*





Bogomolny Equations
In mathematics, and especially gauge theory, the Bogomolny equation for magnetic monopoles is the equation :F_A = \star d_A \Phi, where F_A is the curvature of a connection A on a principal G-bundle over a 3-manifold M, \Phi is a section of the corresponding adjoint bundle, d_A is the exterior covariant derivative induced by A on the adjoint bundle, and \star is the Hodge star operator on M. These equations are named after E. B. Bogomolny and were studied extensively by Michael Atiyah and Nigel Hitchin. The equations are a dimensional reduction of the self-dual Yang–Mills equations from four dimensions to three dimensions, and correspond to global minima of the appropriate action. If M is closed, there are only trivial (i.e. flat) solutions. See also * Monopole moduli space *Ginzburg–Landau theory *Seiberg–Witten theory *Bogomol'nyi–Prasad–Sommerfield bound The Bogomol'nyi–Prasad–Sommerfield bound (named after Evgeny Bogomolny, M.K. Prasad, and Charle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Michael Atiyah
Sir Michael Francis Atiyah (; 22 April 1929 – 11 January 2019) was a British-Lebanese mathematician specialising in geometry. His contributions include the Atiyah–Singer index theorem and co-founding topological K-theory. He was awarded the Fields Medal in 1966 and the Abel Prize in 2004. Life Atiyah grew up in Sudan and Egypt but spent most of his academic life in the United Kingdom at the University of Oxford and the University of Cambridge and in the United States at the Institute for Advanced Study. He was the President of the Royal Society (1990–1995), founding director of the Isaac Newton Institute (1990–1996), master of Trinity College, Cambridge (1990–1997), chancellor of the University of Leicester (1995–2005), and the President of the Royal Society of Edinburgh (2005–2008). From 1997 until his death, he was an honorary professor in the University of Edinburgh. Atiyah's mathematical collaborators included Raoul Bott, Friedrich Hirzebruch and Isadore Sin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bogomol'nyi–Prasad–Sommerfield Bound
The Bogomol'nyi–Prasad–Sommerfield bound (named after Evgeny Bogomolny, M.K. Prasad, and Charles Sommerfield) is a series of inequalities for solutions of partial differential equations depending on the homotopy class of the solution at infinity. This set of inequalities is very useful for solving soliton equations. Often, by insisting that the bound be satisfied (called "saturated"), one can come up with a simpler set of partial differential equations to solve the Bogomolny equations. Solutions saturating the bound are called "BPS states" and play an important role in field theory and string theory. Example In a theory of non-abelian Yang–Mills–Higgs, the energy at a given time ''t'' is given by :E=\int d^3x\, \left frac\pi^T \pi + V(\varphi) + \frac\operatorname\left[\vec\cdot\vec+\vec\cdot\vec\rightright] where \pi is the covariant derivative of the Higgs field and ''V'' is the potential. If we assume that ''V'' is nonnegative and is zero only for the Higgs vacu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Seiberg–Witten Theory
In theoretical physics, Seiberg–Witten theory is a theory that determines an exact low-energy effective action (for massless degrees of freedom) of a \mathcal = 2 supersymmetric gauge theory—namely the metric of the moduli space of vacua. Seiberg–Witten curves In general, effective Lagrangians of supersymmetric gauge theories are largely determined by their holomorphic properties and their behavior near the singularities. In particular, in gauge theory with \mathcal = 2 extended supersymmetry, the moduli space of vacua is a special Kähler manifold and its Kähler potential is constrained by above conditions. In the original approach, by Seiberg and Witten, holomorphy and electric-magnetic duality constraints are strong enough to almost uniquely constrain the prepotential, and therefore the metric of the moduli space of vacua, for theories with SU(2) gauge group. More generally, consider the example with gauge group SU(n). The classical potential is This vanishes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ginzburg–Landau Theory
In physics, Ginzburg–Landau theory, often called Landau–Ginzburg theory, named after Vitaly Ginzburg and Lev Landau, is a mathematical physical theory used to describe superconductivity. In its initial form, it was postulated as a phenomenological model which could describe type-I superconductors without examining their microscopic properties. One GL-type superconductor is the famous YBCO, and generally all Cuprates. Later, a version of Ginzburg–Landau theory was derived from the Bardeen–Cooper–Schrieffer microscopic theory by Lev Gor'kov, thus showing that it also appears in some limit of microscopic theory and giving microscopic interpretation of all its parameters. The theory can also be given a general geometric setting, placing it in the context of Riemannian geometry, where in many cases exact solutions can be given. This general setting then extends to quantum field theory and string theory, again owing to its solvability, and its close relation to other, simi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Monopole Moduli Space
In mathematics, the monopole moduli space is a space parametrizing monopoles (solutions of the Bogomolny equations). studied the moduli space for 2 monopoles in detail and used it to describe the scattering of monopoles. See also * Hitchin system References *{{Citation , last1=Atiyah , first1=Michael , author1-link=Michael Atiyah , author2-link=Nigel Hitchin , last2=Hitchin , first2=Nigel , title=The geometry and dynamics of magnetic monopoles , publisher=Princeton University Press Princeton University Press is an independent publisher with close connections to Princeton University. Its mission is to disseminate scholarship within academia and society at large. The press was founded by Whitney Darrow, with the financial su ... , series=M. B. Porter Lectures , isbn=978-0-691-08480-0 , mr=934202 , year=1988 Differential geometry ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Yang–Mills Equations
In physics and mathematics, and especially differential geometry and gauge theory, the Yang–Mills equations are a system of partial differential equations for a connection on a vector bundle or principal bundle. They arise in physics as the Euler–Lagrange equations of the Yang–Mills action functional. They have also found significant use in mathematics. Solutions of the equations are called Yang–Mills connections or instantons. The moduli space of instantons was used by Simon Donaldson to prove Donaldson's theorem. Motivation Physics In their foundational paper on the topic of gauge theories, Robert Mills and Chen-Ning Yang developed (essentially independent of the mathematical literature) the theory of principal bundles and connections in order to explain the concept of ''gauge symmetry'' and ''gauge invariance'' as it applies to physical theories. The gauge theories Yang and Mills discovered, now called ''Yang–Mills theories'', generalised the classical work of J ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Princeton University Press
Princeton University Press is an independent publisher with close connections to Princeton University. Its mission is to disseminate scholarship within academia and society at large. The press was founded by Whitney Darrow, with the financial support of Charles Scribner, as a printing press to serve the Princeton community in 1905. Its distinctive building was constructed in 1911 on William Street in Princeton. Its first book was a new 1912 edition of John Witherspoon's ''Lectures on Moral Philosophy.'' History Princeton University Press was founded in 1905 by a recent Princeton graduate, Whitney Darrow, with financial support from another Princetonian, Charles Scribner II. Darrow and Scribner purchased the equipment and assumed the operations of two already existing local publishers, that of the ''Princeton Alumni Weekly'' and the Princeton Press. The new press printed both local newspapers, university documents, ''The Daily Princetonian'', and later added book publishing to it ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Nigel Hitchin
Nigel James Hitchin FRS (born 2 August 1946) is a British mathematician working in the fields of differential geometry, gauge theory, algebraic geometry, and mathematical physics. He is a Professor Emeritus of Mathematics at the University of Oxford. Academic career Hitchin attended Ecclesbourne School, Duffield, and earned his BA in mathematics from Jesus College, Oxford, in 1968.''Fellows' News'', Jesus College Record (1998/9) (p.12) After moving to Wolfson College, he received his D.Phil. in 1972. From 1971 to 1973 he visited the Institute for Advanced Study and 1973/74 the Courant Institute of Mathematical Sciences of New York University. He then was a research fellow in Oxford and starting in 1979 tutor, lecturer and fellow of St Catherine's College. In 1990 he became a professor at the University of Warwick and in 1994 the Rouse Ball Professor of Mathematics at the University of Cambridge. In 1997 he was appointed to the Savilian Chair of Geometry at the University of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hodge Star Operator
In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge. For example, in an oriented 3-dimensional Euclidean space, an oriented plane can be represented by the exterior product of two basis vectors, and its Hodge dual is the normal vector given by their cross product; conversely, any vector is dual to the oriented plane perpendicular to it, endowed with a suitable bivector. Generalizing this to an -dimensional vector space, the Hodge star is a one-to-one mapping of -vectors to -vectors; the dimensions of these spaces are the binomial coefficients \tbinom nk = \tbinom. The naturalness of the star operator means it can play a role in differential geometry, when applied to the cotangent bundle of a ps ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gauge Theory (mathematics)
In mathematics, and especially differential geometry and mathematical physics, gauge theory is the general study of connections on vector bundles, principal bundles, and fibre bundles. Gauge theory in mathematics should not be confused with the closely related concept of a gauge theory in physics, which is a field theory which admits gauge symmetry. In mathematics ''theory'' means a mathematical theory, encapsulating the general study of a collection of concepts or phenomena, whereas in the physical sense a gauge theory is a mathematical model of some natural phenomenon. Gauge theory in mathematics is typically concerned with the study of gauge-theoretic equations. These are differential equations involving connections on vector bundles or principal bundles, or involving sections of vector bundles, and so there are strong links between gauge theory and geometric analysis. These equations are often physically meaningful, corresponding to important concepts in quantum field theo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Exterior Covariant Derivative
In the mathematical field of differential geometry, the exterior covariant derivative is an extension of the notion of exterior derivative to the setting of a differentiable principal bundle or vector bundle with a connection. Definition Let ''G'' be a Lie group and be a principal ''G''-bundle on a smooth manifold ''M''. Suppose there is a connection on ''P''; this yields a natural direct sum decomposition T_u P = H_u \oplus V_u of each tangent space into the horizontal and vertical subspaces. Let h: T_u P \to H_u be the projection to the horizontal subspace. If ''ϕ'' is a ''k''-form on ''P'' with values in a vector space ''V'', then its exterior covariant derivative ''Dϕ'' is a form defined by :D\phi(v_0, v_1,\dots, v_k)= d \phi(h v_0 ,h v_1,\dots, h v_k) where ''v''''i'' are tangent vectors to ''P'' at ''u''. Suppose that is a representation of ''G'' on a vector space ''V''. If ''ϕ'' is equivariant in the sense that :R_g^* \phi = \rho(g)^\phi where R_g(u) = ug, then ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]