Bo Berndtsson
   HOME
*



picture info

Bo Berndtsson
Bo Berndtsson (born 24 December 1950), is a Swedish mathematician. His main contributions concern the theory of several complex variables and complex geometry. He gained in 1971 a BA degree from the University of Gothenburg in Sweden and obtained his PhD in 1977 under the direction of Tord Ganelius. Since 1996 he has been a professor at Chalmers University of Technology in Gothenburg. He has also been a guest professor at UCLA in Los Angeles, Université de Paris, Paul Sabatier University, Université Paul Sabatier in Toulouse, Autonomous University of Barcelona, UAB in Barcelona and Instituto Politécnico Nacional, IPN in Mexico City. Berndtsson has been a member of the Royal Swedish Academy of Sciences since 2003. In 1995 he was awarded the Göran Gustafsson Prize. For 2017 he received the Stefan Bergman Prize. Mathematical work Berndtsson's first results concern zero sets of holomorphic functions, and in 1981 he showed that any divisor with finite area in the unit ball in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bo Berndtsson
Bo Berndtsson (born 24 December 1950), is a Swedish mathematician. His main contributions concern the theory of several complex variables and complex geometry. He gained in 1971 a BA degree from the University of Gothenburg in Sweden and obtained his PhD in 1977 under the direction of Tord Ganelius. Since 1996 he has been a professor at Chalmers University of Technology in Gothenburg. He has also been a guest professor at UCLA in Los Angeles, Université de Paris, Paul Sabatier University, Université Paul Sabatier in Toulouse, Autonomous University of Barcelona, UAB in Barcelona and Instituto Politécnico Nacional, IPN in Mexico City. Berndtsson has been a member of the Royal Swedish Academy of Sciences since 2003. In 1995 he was awarded the Göran Gustafsson Prize. For 2017 he received the Stefan Bergman Prize. Mathematical work Berndtsson's first results concern zero sets of holomorphic functions, and in 1981 he showed that any divisor with finite area in the unit ball in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Holomorphic Function
In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivative in a neighbourhood is a very strong condition: it implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series (''analytic''). Holomorphic functions are the central objects of study in complex analysis. Though the term ''analytic function'' is often used interchangeably with "holomorphic function", the word "analytic" is defined in a broader sense to denote any function (real, complex, or of more general type) that can be written as a convergent power series in a neighbourhood of each point in its domain. That all holomorphic functions are complex analytic functions, and vice versa, is a major theorem in complex analysis. Holomorphic functions are also sometimes referred to as ''regular fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eckart Viehweg
Eckart Viehweg (born 30 December 1948 in Zwickau, died 29 January 2010) was a German mathematician. He was a professor of algebraic geometry at the University of Duisburg-Essen. In 2003 he won the Gottfried Wilhelm Leibniz Prize with his wife, Hélène Esnault. See also *Kawamata–Viehweg vanishing theorem In algebraic geometry, the Kawamata–Viehweg vanishing theorem is an extension of the Kodaira vanishing theorem, on the vanishing of coherent cohomology groups, to logarithmic pairs, proved independently by Viehweg and Kawamata in 1982. The th ... References External links HomepageBook: ''Hélène Esnault, Eckart Viehweg'': "Lectures on Vanishing Theorems" (PDF, 1.3 MB)Book: ''Eckart Viehweg'': "Quasi-projective Moduli for Polarized Manifolds" (PDF, 1.5 MB) {{DEFAULTSORT:Viehweg, Eckart 1948 births 2010 deaths People from Zwickau Gottfried Wilhelm Leibniz Prize winners 20th-century German mathematicians 21st-century German mathematicians Academic staff of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Yujiro Kawamata
Yujiro Kawamata (born 1952) is a Japanese mathematician working in algebraic geometry. Career Kawamata completed the master's course at the University of Tokyo in 1977. He was an Assistant at the University of Mannheim from 1977 to 1979 and a Miller Fellow at the University of California, Berkeley from 1981 to 1983. Kawamata is now a professor at the University of Tokyo. He won the Mathematical Society of Japan Autumn award (1988) and the Japan Academy of Sciences award (1990) for his work in algebraic geometry. Research Kawamata was involved in the development of the minimal model program in the 1980s. The program aims to show that every algebraic variety is birational to one of an especially simple type: either a minimal model or a Fano fiber space. The Kawamata-Viehweg vanishing theorem, strengthening the Kodaira vanishing theorem, is a method. Building on that, Kawamata proved the basepoint-free theorem. The cone theorem and contraction theorem, central results in t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Phillip Griffiths
Phillip Augustus Griffiths IV (born October 18, 1938) is an American mathematician, known for his work in the field of geometry, and in particular for the complex manifold approach to algebraic geometry. He was a major developer in particular of the theory of variation of Hodge structure in Hodge theory and moduli theory. He also worked on partial differential equations, coauthored with Shiing-Shen Chern, Robert Bryant and Robert Gardner on Exterior Differential Systems. Professional career He received his BS from Wake Forest College in 1959 and his PhD from Princeton University in 1962 after completing a doctoral dissertation, titled "On certain homogeneous complex manifolds", under the supervision of Donald Spencer. Afterwards, he held positions at University of California, Berkeley (1962–1967) and Princeton University (1967–1972). Griffiths was a professor of mathematics at Harvard University from 1972 to 1983. He was then a Provost and James B. Duke Professor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ample Line Bundle
In mathematics, a distinctive feature of algebraic geometry is that some line bundles on a projective variety can be considered "positive", while others are "negative" (or a mixture of the two). The most important notion of positivity is that of an ample line bundle, although there are several related classes of line bundles. Roughly speaking, positivity properties of a line bundle are related to having many global sections. Understanding the ample line bundles on a given variety ''X'' amounts to understanding the different ways of mapping ''X'' into projective space. In view of the correspondence between line bundles and divisors (built from codimension-1 subvarieties), there is an equivalent notion of an ample divisor. In more detail, a line bundle is called basepoint-free if it has enough sections to give a morphism to projective space. A line bundle is semi-ample if some positive power of it is basepoint-free; semi-ampleness is a kind of "nonnegativity". More strongly, a line bun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fibration
The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics. Fibrations are used, for example, in postnikov-systems or obstruction theory. In this article, all mappings are continuous mappings between topological spaces. Formal definitions Homotopy lifting property A mapping p \colon E \to B satisfies the homotopy lifting property for a space X if: * for every homotopy h \colon X \times , 1\to B and * for every mapping (also called lift) \tilde h_0 \colon X \to E lifting h, _ = h_0 (i.e. h_0 = p \circ \tilde h_0) there exists a (not necessarily unique) homotopy \tilde h \colon X \times , 1\to E lifting h (i.e. h = p \circ \tilde h) with \tilde h_0 = \tilde h, _. The following commutative diagram shows the situation:^ Fibration A fibration (also called Hurewicz fibration) is a mapping p \colon E \to B satisfying the homotopy lifting property for all spaces X. The space B is called base ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Bundles
In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to every point x of the space X we associate (or "attach") a vector space V(x) in such a way that these vector spaces fit together to form another space of the same kind as X (e.g. a topological space, manifold, or algebraic variety), which is then called a vector bundle over X. The simplest example is the case that the family of vector spaces is constant, i.e., there is a fixed vector space V such that V(x)=V for all x in X: in this case there is a copy of V for each x in X and these copies fit together to form the vector bundle X\times V over X. Such vector bundles are said to be ''trivial''. A more complicated (and prototypical) class of examples are the tangent bundles of smooth (or differentiable) manifolds: to every point of such a manifold w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Manifold
In differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in \mathbb^n, such that the transition maps are holomorphic. The term complex manifold is variously used to mean a complex manifold in the sense above (which can be specified as an integrable complex manifold), and an almost complex manifold. Implications of complex structure Since holomorphic functions are much more rigid than smooth functions, the theories of smooth and complex manifolds have very different flavors: compact complex manifolds are much closer to algebraic varieties than to differentiable manifolds. For example, the Whitney embedding theorem tells us that every smooth ''n''-dimensional manifold can be embedded as a smooth submanifold of R2''n'', whereas it is "rare" for a complex manifold to have a holomorphic embedding into C''n''. Consider for example any compact connected complex manifold ''M'': any holomorphic function on it is cons ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hilbert Space
In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that defines a distance function for which the space is a complete metric space. The earliest Hilbert spaces were studied from this point of view in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equations, quantum mechanics, Fourier analysis (which includes applications to signal processing and heat transfer), and ergodic theory (which forms the mathematical underpinning of thermodynamics). John von Neumann coined the term ''Hilbert space'' for the abstract concept that under ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Joseph J
Joseph is a common male given name, derived from the Hebrew Yosef (יוֹסֵף). "Joseph" is used, along with "Josef", mostly in English, French and partially German languages. This spelling is also found as a variant in the languages of the modern-day Nordic countries. In Portuguese and Spanish, the name is "José". In Arabic, including in the Quran, the name is spelled '' Yūsuf''. In Persian, the name is "Yousef". The name has enjoyed significant popularity in its many forms in numerous countries, and ''Joseph'' was one of the two names, along with ''Robert'', to have remained in the top 10 boys' names list in the US from 1925 to 1972. It is especially common in contemporary Israel, as either "Yossi" or "Yossef", and in Italy, where the name "Giuseppe" was the most common male name in the 20th century. In the first century CE, Joseph was the second most popular male name for Palestine Jews. In the Book of Genesis Joseph is Jacob's eleventh son and Rachel's first son, and k ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lars Hörmander
Lars Valter Hörmander (24 January 1931 – 25 November 2012) was a Swedish mathematician who has been called "the foremost contributor to the modern theory of linear partial differential equations". Hörmander was awarded the Fields Medal in 1962 and the Wolf Prize in 1988. In 2006 he was awarded the Steele Prize for Mathematical Exposition for his four-volume textbook ''Analysis of Linear Partial Differential Operators'', which is considered a foundational work on the subject. Hörmander completed his Ph.D. in 1955 at Lund University. Hörmander then worked at Stockholm University, at Stanford University, and at the Institute for Advanced Study in Princeton, New Jersey. He returned to Lund University as a professor from 1968 until 1996, when he retired with the title of professor emeritus. Biography Education Hörmander was born in Mjällby, a village in Blekinge in southern Sweden where his father was a teacher. Like his older brothers and sisters before him, he att ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]