HOME



picture info

Bivector
In mathematics, a bivector or 2-vector is a quantity in exterior algebra or geometric algebra that extends the idea of scalars and vectors. Considering a scalar as a degree-zero quantity and a vector as a degree-one quantity, a bivector is of degree two. Bivectors have applications in many areas of mathematics and physics. They are related to complex numbers in two dimensions and to both pseudovectors and vector quaternions in three dimensions. They can be used to generate rotations in a space of any number of dimensions, and are a useful tool for classifying such rotations. Geometrically, a simple bivector can be interpreted as characterizing a directed plane segment (or oriented plane segment), much as vectors can be thought of as characterizing '' directed line segments''. The bivector has an ''attitude'' (or direction) of the plane spanned by and , has an area that is a scalar multiple of any reference plane segment with the same attitude (and in geometric algebra, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Bivector (complex)
In mathematics, a bivector is the vector part of a biquaternion. For biquaternion , ''w'' is called the biscalar and is its bivector part. The coordinates ''w'', ''x'', ''y'', ''z'' are complex numbers with imaginary unit h: :x = x_1 + \mathrm x_2,\ y = y_1 + \mathrm y_2,\ z = z_1 + \mathrm z_2, \quad \mathrm^2 = -1 = \mathrm^2 = \mathrm^2 = \mathrm^2 . A bivector may be written as the sum of real and imaginary parts: :(x_1 \mathrm + y_1 \mathrm + z_1 \mathrm) + \mathrm (x_2 \mathrm + y_2 \mathrm + z_2 \mathrm) where r_1 = x_1 \mathrm + y_1 \mathrm + z_1 \mathrm and r_2 = x_2 \mathrm + y_2 \mathrm + z_2 \mathrm are vectors. Thus the bivector q = x \mathrm + y \mathrm + z \mathrm = r_1 + \mathrm r_2 . Link from David R. Wilkins collection at Trinity College, Dublin The Lie algebra of the Lorentz group is expressed by bivectors. In particular, if ''r''1 and ''r''2 are right versors so that r_1^2 = -1 = r_2^2, then the biquaternion curve traces over and over the unit circle in th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometric Algebra
In mathematics, a geometric algebra (also known as a Clifford algebra) is an algebra that can represent and manipulate geometrical objects such as vectors. Geometric algebra is built out of two fundamental operations, addition and the geometric product. Multiplication of vectors results in higher-dimensional objects called multivectors. Compared to other formalisms for manipulating geometric objects, geometric algebra is noteworthy for supporting vector division (though generally not by all elements) and addition of objects of different dimensions. The geometric product was first briefly mentioned by Hermann Grassmann, who was chiefly interested in developing the closely related exterior algebra. In 1878, William Kingdon Clifford greatly expanded on Grassmann's work to form what are now usually called Clifford algebras in his honor (although Clifford himself chose to call them "geometric algebras"). Clifford defined the Clifford algebra and its product as a unification of the Gras ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pseudovector
In physics and mathematics, a pseudovector (or axial vector) is a quantity that transforms like a vector under continuous rigid transformations such as rotations or translations, but which does ''not'' transform like a vector under certain ''discontinuous'' rigid transformations such as reflections. For example, the angular velocity of a rotating object is a pseudovector because, when the object is reflected in a mirror, the reflected image rotates in such a way so that ''its'' angular velocity "vector" is ''not'' the mirror image of the angular velocity "vector" of the ''original'' object; for true vectors (also known as ''polar vectors''), the reflection "vector" and the original "vector" ''must'' be mirror images. One example of a pseudovector is the normal to an oriented plane. An oriented plane can be defined by two non-parallel vectors, a and b,
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quaternions
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. The algebra of quaternions is often denoted by (for ''Hamilton''), or in blackboard bold by \mathbb H. Quaternions are not a field, because multiplication of quaternions is not, in general, commutative. Quaternions provide a definition of the quotient of two vectors in a three-dimensional space. Quaternions are generally represented in the form a + b\,\mathbf i + c\,\mathbf j +d\,\mathbf k, where the coefficients , , , are real numbers, and , are the ''basis vectors'' or ''basis elements''. Quaternions are used in pure mathematics, but also have practical uses in applied mathematics, particularly for calculations involving three-dimensional rotations, such as in three-dimensional computer graphics, computer vision, robotics, magnetic resonance imaging and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vector Quaternion
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. The algebra of quaternions is often denoted by (for ''Hamilton''), or in blackboard bold by \mathbb H. Quaternions are not a field, because multiplication of quaternions is not, in general, commutative. Quaternions provide a definition of the quotient of two vectors in a three-dimensional space. Quaternions are generally represented in the form a + b\,\mathbf i + c\,\mathbf j +d\,\mathbf k, where the coefficients , , , are real numbers, and , are the ''basis vectors'' or ''basis elements''. Quaternions are used in pure mathematics, but also have practical uses in applied mathematics, particularly for calculations involving three-dimensional rotations, such as in three-dimensional computer graphics, computer vision, robotics, magnetic resonance imaging and c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Biquaternion
In abstract algebra, the biquaternions are the numbers , where , and are complex numbers, or variants thereof, and the elements of multiply as in the quaternion group and commute with their coefficients. There are three types of biquaternions corresponding to complex numbers and the variations thereof: * Biquaternions when the coefficients are complex numbers. * Split-biquaternions when the coefficients are split-complex numbers. * Dual quaternions when the coefficients are dual numbers. This article is about the ''ordinary biquaternions'' named by William Rowan Hamilton in 1844. Some of the more prominent proponents of these biquaternions include Alexander Macfarlane, Arthur W. Conway, Ludwik Silberstein, and Cornelius Lanczos. As developed below, the unit quasi-sphere of the biquaternions provides a representation of the Lorentz group, which is the foundation of special relativity. The algebra of biquaternions can be considered as a tensor product of algebras, tensor product , ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exterior Algebra
In mathematics, the exterior algebra or Grassmann algebra of a vector space V is an associative algebra that contains V, which has a product, called exterior product or wedge product and denoted with \wedge, such that v\wedge v=0 for every vector v in V. The exterior algebra is named after Hermann Grassmann, and the names of the product come from the "wedge" symbol \wedge and the fact that the product of two elements of V is "outside" V. The wedge product of k vectors v_1 \wedge v_2 \wedge \dots \wedge v_k is called a ''blade (geometry), blade of degree k'' or ''k-blade''. The wedge product was introduced originally as an algebraic construction used in geometry to study areas, volumes, and their higher-dimensional analogues: the magnitude (mathematics), magnitude of a bivector, -blade v\wedge w is the area of the parallelogram defined by v and w, and, more generally, the magnitude of a k-blade is the (hyper)volume of the Parallelepiped#Parallelotope, parallelotope defined by the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Skew-symmetric Matrix
In mathematics, particularly in linear algebra, a skew-symmetric (or antisymmetric or antimetric) matrix is a square matrix whose transpose equals its negative. That is, it satisfies the condition In terms of the entries of the matrix, if a_ denotes the entry in the i-th row and j-th column, then the skew-symmetric condition is equivalent to Example The matrix A = \begin 0 & 2 & -45 \\ -2 & 0 & -4 \\ 45 & 4 & 0 \end is skew-symmetric because A^\textsf = \begin 0 & -2 & 45 \\ 2 & 0 & 4 \\ -45 & -4 & 0 \end = -A . Properties Throughout, we assume that all matrix entries belong to a field \mathbb whose characteristic is not equal to 2. That is, we assume that , where 1 denotes the multiplicative identity and 0 the additive identity of the given field. If the characteristic of the field is 2, then a skew-symmetric matrix is the same thing as a symmetric matrix. * The sum of two skew-symmetric matrices is skew-symmetric. * A scalar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Directed Line Segment
In geometry, a line segment is a part of a straight line that is bounded by two distinct endpoints (its extreme points), and contains every point on the line that is between its endpoints. It is a special case of an '' arc'', with zero curvature. The length of a line segment is given by the Euclidean distance between its endpoints. A closed line segment includes both endpoints, while an open line segment excludes both endpoints; a half-open line segment includes exactly one of the endpoints. In geometry, a line segment is often denoted using an overline ( vinculum) above the symbols for the two endpoints, such as in . Examples of line segments include the sides of a triangle or square. More generally, when both of the segment's end points are vertices of a polygon or polyhedron, the line segment is either an edge (of that polygon or polyhedron) if they are adjacent vertices, or a diagonal. When the end points both lie on a curve (such as a circle), a line segment is called a c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Clifford Algebra
In mathematics, a Clifford algebra is an algebra generated by a vector space with a quadratic form, and is a unital associative algebra with the additional structure of a distinguished subspace. As -algebras, they generalize the real numbers, complex numbers, quaternions and several other hypercomplex number systems. The theory of Clifford algebras is intimately connected with the theory of quadratic forms and orthogonal transformations. Clifford algebras have important applications in a variety of fields including geometry, theoretical physics and digital image processing. They are named after the English mathematician William Kingdon Clifford (1845–1879). The most familiar Clifford algebras, the orthogonal Clifford algebras, are also referred to as (''pseudo-'')''Riemannian Clifford algebras'', as distinct from ''symplectic Clifford algebras''. Introduction and basic properties A Clifford algebra is a unital associative algebra that contains and is generated by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Plane Segment
In Euclidean geometry, a plane is a flat two-dimensional surface that extends indefinitely. Euclidean planes often arise as subspaces of three-dimensional space \mathbb^3. A prototypical example is one of a room's walls, infinitely extended and assumed infinitesimally thin. While a pair of real numbers \mathbb^2 suffices to describe points on a plane, the relationship with out-of-plane points requires special consideration for their embedding in the ambient space \mathbb^3. Derived concepts A or (or simply "plane", in lay use) is a planar surface region; it is analogous to a line segment. A ''bivector'' is an oriented plane segment, analogous to directed line segments. A ''face'' is a plane segment bounding a solid object. A '' slab'' is a region bounded by two parallel planes. A ''parallelepiped'' is a region bounded by three pairs of parallel planes. Background Euclid set forth the first great landmark of mathematical thought, an axiomatic treatment of geometry. He sel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]