HOME
*





Berlekamp–Zassenhaus Algorithm
In mathematics, in particular in computer algebra, computational algebra, the Berlekamp–Zassenhaus algorithm is an algorithm for factoring polynomials over the integers, named after Elwyn Berlekamp and Hans Zassenhaus. As a consequence of Gauss's lemma (number theory), Gauss's lemma, this amounts to solving the problem also over the rationals. The algorithm starts by finding factorizations over suitable finite fields using Hensel's lemma to lift the solution from modulo a prime ''p'' to a convenient power of ''p''. After this the right factors are found as a subset of these. The worst case of this algorithm is exponential in the number of factors. improved this algorithm by using the LLL algorithm, substantially reducing the time needed to choose the right subsets of mod ''p'' factors. References *. *. *. *. *. *. External links * See also

*Berlekamp's algorithm Computer algebra {{Algorithm-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Algebra
In mathematics and computer science, computer algebra, also called symbolic computation or algebraic computation, is a scientific area that refers to the study and development of algorithms and software for manipulating mathematical expressions and other mathematical objects. Although computer algebra could be considered a subfield of scientific computing, they are generally considered as distinct fields because scientific computing is usually based on numerical computation with approximate floating point numbers, while symbolic computation emphasizes ''exact'' computation with expressions containing variables that have no given value and are manipulated as symbols. Software applications that perform symbolic calculations are called ''computer algebra systems'', with the term ''system'' alluding to the complexity of the main applications that include, at least, a method to represent mathematical data in a computer, a user programming language (usually different from the languag ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can perform automated deductions (referred to as automated reasoning) and use mathematical and logical tests to divert the code execution through various routes (referred to as automated decision-making). Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus". In contrast, a Heuristic (computer science), heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no well-defined correct or optimal result. As an effective method, an algorithm ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example of a polynomial of a single indeterminate is . An example with three indeterminates is . Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; they are used in calculus and numerical analysis to approximate other functions. In advanced mathematics, polynomials are used to construct polynomial rings and algebraic varieties, which are central concepts in algebra and algebraic geometry. Etymology The word ''polynomial'' join ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Integer
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign (−1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language of mathematics, the set of integers is often denoted by the boldface or blackboard bold \mathbb. The set of natural numbers \mathbb is a subset of \mathbb, which in turn is a subset of the set of all rational numbers \mathbb, itself a subset of the real numbers \mathbb. Like the natural numbers, \mathbb is countably infinite. An integer may be regarded as a real number that can be written without a fractional component. For example, 21, 4, 0, and −2048 are integers, while 9.75, , and  are not. The integers form the smallest group and the smallest ring containing the natural numbers. In algebraic number theory, the integers are sometimes qualified as rational integers to distinguish them from the more general algebraic integers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elwyn Berlekamp
Elwyn Ralph Berlekamp (September 6, 1940 – April 9, 2019) was a professor of mathematics and computer science at the University of California, Berkeley.Contributors, ''IEEE Transactions on Information Theory'' 42, #3 (May 1996), p. 1048. DO10.1109/TIT.1996.490574Elwyn Berlekamp
listing at the Department of Mathematics, .
Berlekamp was widely known for his work in computer science, and

picture info

Hans Zassenhaus
Hans Julius Zassenhaus (28 May 1912 – 21 November 1991) was a German mathematician, known for work in many parts of abstract algebra, and as a pioneer of computer algebra. Biography He was born in Koblenz in 1912. His father was a historian and advocate for Reverence for Life as expressed by Albert Schweitzer. Hans had two brothers, Guenther and Wilfred, and sister Hiltgunt, who wrote an autobiography in 1974. According to her, their father lost his position as school principal due to his philosophy. She wrote:Hiltgunt Zassenhaus (1974) ''Walls: Resisting the Third Reich'', Beacon Press :Hans, my eldest brother, studied mathematics. My brothers Guenther and Wilfred were in medical school. ... only students who participated in Nazi activities would get scholarships. That left us out. Together we made an all-out effort. ... soon our house became a beehive. Day in and day out for the next four years a small army of children of all ages would arrive to be tutored. At the University ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Gauss's Lemma (number Theory)
Gauss's lemma in number theory gives a condition for an integer to be a quadratic residue. Although it is not useful computationally, it has theoretical significance, being involved in some proofs of quadratic reciprocity. It made its first appearance in Carl Friedrich Gauss's third proof (1808) of quadratic reciprocity and he proved it again in his fifth proof (1818). Statement of the lemma For any odd prime let be an integer that is coprime to . Consider the integers :a, 2a, 3a, \dots, \fraca and their least positive residues modulo . These residues are all distinct, so there are ( of them. Let be the number of these residues that are greater than . Then :\left(\frac\right) = (-1)^n, where \left(\frac\right) is the Legendre symbol. Example Taking = 11 and = 7, the relevant sequence of integers is : 7, 14, 21, 28, 35. After reduction modulo 11, this sequence becomes : 7, 3, 10, 6, 2. Three of these integers are larger than 11/2 (namely 6, 7 and 10), so = 3. Corresp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Finite Field
In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtraction and division are defined and satisfy certain basic rules. The most common examples of finite fields are given by the integers mod when is a prime number. The ''order'' of a finite field is its number of elements, which is either a prime number or a prime power. For every prime number and every positive integer there are fields of order p^k, all of which are isomorphic. Finite fields are fundamental in a number of areas of mathematics and computer science, including number theory, algebraic geometry, Galois theory, finite geometry, cryptography and coding theory. Properties A finite field is a finite set which is a field; this means that multiplication, addition, subtraction and division (excluding division by zero) are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hensel's Lemma
In mathematics, Hensel's lemma, also known as Hensel's lifting lemma, named after Kurt Hensel, is a result in modular arithmetic, stating that if a univariate polynomial has a simple root modulo a prime number , then this root can be ''lifted'' to a unique root modulo any higher power of . More generally, if a polynomial factors modulo into two coprime polynomials, this factorization can be lifted to a factorization modulo any higher power of (the case of roots corresponds to the case of degree for one of the factors). By passing to the "limit" (in fact this is an inverse limit) when the power of tends to infinity, it follows that a root or a factorization modulo can be lifted to a root or a factorization over the -adic integers. These results have been widely generalized, under the same name, to the case of polynomials over an arbitrary commutative ring, where is replaced by an ideal, and "coprime polynomials" means "polynomials that generate an ideal containing ". Hensel' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


LLL Algorithm
LLL may refer to: Businesses and organisations *L3 Technologies, an American defense contractor formerly with the NYSE stock symbol LLL *La Leche League, an organization that promotes breastfeeding Education * LL.L (''Legum Licentiatus''), a degree in civil law at various Canadian universities (especially in Québec) * Lifelong learning * Lambda Lambda Lambda, a co-ed fraternity Entertainment *''Leisure Suit Larry in the Land of the Lounge Lizards'', the first of a series of video games *'' Love's Labour's Lost'', a comedy by William Shakespeare * Landau, Luckman, and Lake, a fictional holding company in Marvel Comics *LLL, the production code for the 1972 ''Doctor Who'' serial ''The Sea Devils'' *"L. L. L.", a 2015 song by Myth & Roid Military units *Loyal Lusitanian Legion, a foreign volunteer corps of the British Army, that fought in the Peninsular War Religion *Lutheran Laymen's League, also known as Lutheran Hour Ministries, a Christian outreach ministry *"Lunat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bell System Technical Journal
The ''Bell Labs Technical Journal'' is the in-house scientific journal for scientists of Nokia Bell Labs, published yearly by the IEEE society. The managing editor is Charles Bahr. The journal was originally established as the ''Bell System Technical Journal'' (BSTJ) in New York by the American Telephone and Telegraph Company (AT&T) in 1922, published under this name until 1983, when the breakup of the Bell System placed various parts of the system into separate companies. The journal was devoted to the scientific fields and engineering disciplines practiced in the Bell System for improvements in the wide field of electrical communication. After the restructuring of Bell Labs in 1984, the journal was renamed to ''AT&T Bell Laboratories Technical Journal''. In 1985, it was published as the ''AT&T Technical Journal'' until 1996, when it was renamed to ''Bell Labs Technical Journal''. History The ''Bell System Technical Journal'' was published by AT&T in New York City through its I ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]