Affine Lie Algebra
   HOME
*



picture info

Affine Lie Algebra
In mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. Given an affine Lie algebra, one can also form the associated affine Kac-Moody algebra, as described below. From a purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite-dimensional semisimple Lie algebras, is much better understood than that of general Kac–Moody algebras. As observed by Victor Kac, the character formula for representations of affine Lie algebras implies certain combinatorial identities, the Macdonald identities. Affine Lie algebras play an important role in string theory and two-dimensional conformal field theory due to the way they are constructed: starting from a simple Lie algebra \mathfrak, one considers the loop algebra, L\mathfrak, formed by the \mathfrak-valued functions on a circle (interpreted as the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modular Group
In mathematics, the modular group is the projective special linear group of matrices with integer coefficients and determinant 1. The matrices and are identified. The modular group acts on the upper-half of the complex plane by fractional linear transformations, and the name "modular group" comes from the relation to moduli spaces and not from modular arithmetic. Definition The modular group is the group of linear fractional transformations of the upper half of the complex plane, which have the form :z\mapsto\frac, where , , , are integers, and . The group operation is function composition. This group of transformations is isomorphic to the projective special linear group , which is the quotient of the 2-dimensional special linear group over the integers by its center . In other words, consists of all matrices :\begin a & b \\ c & d \end where , , , are integers, , and pairs of matrices and are considered to be identical. The group operation is the usual mult ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Verma Module
Verma modules, named after Daya-Nand Verma, are objects in the representation theory of Lie algebras, a branch of mathematics. Verma modules can be used in the classification of irreducible representations of a complex semisimple Lie algebra. Specifically, although Verma modules themselves are infinite dimensional, quotients of them can be used to construct finite-dimensional representations with highest weight \lambda, where \lambda is dominant and integral. Their homomorphisms correspond to invariant differential operators over flag manifolds. Informal construction We can explain the idea of a Verma module as follows. Let \mathfrak be a semisimple Lie algebra (over \mathbb, for simplicity). Let \mathfrak be a fixed Cartan subalgebra of \mathfrak and let R be the associated root system. Let R^+ be a fixed set of positive roots. For each \alpha\in R^+, choose a nonzero element X_\alpha for the corresponding root space \mathfrak_\alpha and a nonzero element Y_\alpha in the root ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dynkin Diagrams
In the mathematical field of Lie theory, a Dynkin diagram, named for Eugene Dynkin, is a type of graph with some edges doubled or tripled (drawn as a double or triple line). Dynkin diagrams arise in the classification of semisimple Lie algebras over algebraically closed fields, in the classification of Weyl groups and other finite reflection groups, and in other contexts. Various properties of the Dynkin diagram (such as whether it contains multiple edges, or its symmetries) correspond to important features of the associated Lie algebra. The term "Dynkin diagram" can be ambiguous. In some cases, Dynkin diagrams are assumed to be directed, in which case they correspond to root systems and semi-simple Lie algebras, while in other cases they are assumed to be undirected, in which case they correspond to Weyl groups. In this article, "Dynkin diagram" means ''directed'' Dynkin diagram, and ''undirected'' Dynkin diagrams will be explicitly so named. Classification of semisimple L ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Cartan Matrix
In mathematics, the term Cartan matrix has three meanings. All of these are named after the French mathematician Élie Cartan. Amusingly, the Cartan matrices in the context of Lie algebras were first investigated by Wilhelm Killing, whereas the Killing form is due to Cartan. Lie algebras A (symmetrizable) generalized Cartan matrix is a square matrix A = (a_) with integral entries such that # For diagonal entries, a_ = 2 . # For non-diagonal entries, a_ \leq 0 . # a_ = 0 if and only if a_ = 0 # A can be written as DS, where D is a diagonal matrix, and S is a symmetric matrix. For example, the Cartan matrix for ''G''2 can be decomposed as such: : \begin 2 & -3 \\ -1 & 2 \end = \begin 3&0\\ 0&1 \end\begin \frac & -1 \\ -1 & 2 \end. The third condition is not independent but is really a consequence of the first and fourth conditions. We can always choose a ''D'' with positive diagonal entries. In that case, if ''S'' in the ab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cartan Subalgebra
In mathematics, a Cartan subalgebra, often abbreviated as CSA, is a nilpotent subalgebra \mathfrak of a Lie algebra \mathfrak that is self-normalising (if ,Y\in \mathfrak for all X \in \mathfrak, then Y \in \mathfrak). They were introduced by Élie Cartan in his doctoral thesis. It controls the representation theory of a semi-simple Lie algebra \mathfrak over a field of characteristic 0 . In a finite-dimensional semisimple Lie algebra over an algebraically closed field of characteristic zero (e.g., a Cartan subalgebra is the same thing as a maximal abelian subalgebra consisting of elements ''x'' such that the adjoint endomorphism \operatorname(x) : \mathfrak \to \mathfrak is semisimple (i.e., diagonalizable). Sometimes this characterization is simply taken as the definition of a Cartan subalgebra.pg 231 In general, a subalgebra is called toral if it consists of semisimple elements. Over an algebraically closed field, a toral subalgebra is automatically abelian. Thus, over ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fibration
The notion of a fibration generalizes the notion of a fiber bundle and plays an important role in algebraic topology, a branch of mathematics. Fibrations are used, for example, in postnikov-systems or obstruction theory. In this article, all mappings are continuous mappings between topological spaces. Formal definitions Homotopy lifting property A mapping p \colon E \to B satisfies the homotopy lifting property for a space X if: * for every homotopy h \colon X \times , 1\to B and * for every mapping (also called lift) \tilde h_0 \colon X \to E lifting h, _ = h_0 (i.e. h_0 = p \circ \tilde h_0) there exists a (not necessarily unique) homotopy \tilde h \colon X \times , 1\to E lifting h (i.e. h = p \circ \tilde h) with \tilde h_0 = \tilde h, _. The following commutative diagram shows the situation:^ Fibration A fibration (also called Hurewicz fibration) is a mapping p \colon E \to B satisfying the homotopy lifting property for all spaces X. The space B is called base ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chern Class
In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since found applications in physics, Calabi–Yau manifolds, string theory, Chern–Simons theory, knot theory, Gromov–Witten invariants, topological quantum field theory, the Chern theorem etc. Chern classes were introduced by . Geometric approach Basic idea and motivation Chern classes are characteristic classes. They are topological invariants associated with vector bundles on a smooth manifold. The question of whether two ostensibly different vector bundles are the same can be quite hard to answer. The Chern classes provide a simple test: if the Chern classes of a pair of vector bundles do not agree, then the vector bundles are different. The converse, however, is not true. In topology, differential geometry, and algebraic geometry, it is often important to count how many l ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Twisted Affine Dynkin Diagrams
Twisted may refer to: Film and television * ''Twisted'' (1986 film), a horror film by Adam Holender starring Christian Slater * ''Twisted'' (1996 film), a modern retelling of ''Oliver Twist'' * ''Twisted'', a 2011 Singapore Chinese film directed by Chai Yee Wei * ''Twisted'' (2004 film), a thriller starring Ashley Judd and Andy Garcia * ''Twisted'', a parody musical by StarKid Productions * ''Twisted'' (TV series), 2013 * "Twisted" (''Star Trek: Voyager''), a television episode * ''Twisted'' (web series), an Indian erotic thriller web series Software and games * '' Twisted: The Game Show'', a 1994 3DO game * Twisted (software), an event-driven networking framework * '' WarioWare: Twisted!'', a 2005 game for the Game Boy Advance Books * ''Twisted'' (book), a short story collection by crime writer Jeffery Deaver ** ''More Twisted'', a second short story collection by Deaver * '' Twisted'', a novel by Laurie Halse Anderson * ''Twisted'', a ''Pretty Little Liars'' novel by Sar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Affine Dynkin Diagrams
Affine may describe any of various topics concerned with connections or affinities. It may refer to: * Affine, a relative by marriage in law and anthropology * Affine cipher, a special case of the more general substitution cipher * Affine combination, a certain kind of constrained linear combination * Affine connection, a connection on the tangent bundle of a differentiable manifold * Affine Coordinate System, a coordinate system that can be viewed as a Cartesian coordinate system where the axes have been placed so that they are not necessarily orthogonal to each other. See tensor. * Affine differential geometry, a geometry that studies differential invariants under the action of the special affine group * Affine gap penalty, the most widely used scoring function used for sequence alignment, especially in bioinformatics * Affine geometry, a geometry characterized by parallel lines * Affine group, the group of all invertible affine transformations from any affine space over a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Outer Automorphism Group
In mathematics, the outer automorphism group of a group, , is the quotient, , where is the automorphism group of and ) is the subgroup consisting of inner automorphisms. The outer automorphism group is usually denoted . If is trivial and has a trivial center, then is said to be complete. An automorphism of a group which is not inner is called an outer automorphism. The cosets of with respect to outer automorphisms are then the elements of ; this is an instance of the fact that quotients of groups are not, in general, (isomorphic to) subgroups. If the inner automorphism group is trivial (when a group is abelian), the automorphism group and outer automorphism group are naturally identified; that is, the outer automorphism group does act on the group. For example, for the alternating group, , the outer automorphism group is usually the group of order 2, with exceptions noted below. Considering as a subgroup of the symmetric group, , conjugation by any odd permutation is an oute ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semidirect Product
In mathematics, specifically in group theory, the concept of a semidirect product is a generalization of a direct product. There are two closely related concepts of semidirect product: * an ''inner'' semidirect product is a particular way in which a group can be made up of two subgroups, one of which is a normal subgroup. * an ''outer'' semidirect product is a way to construct a new group from two given groups by using the Cartesian product as a set and a particular multiplication operation. As with direct products, there is a natural equivalence between inner and outer semidirect products, and both are commonly referred to simply as ''semidirect products''. For finite groups, the Schur–Zassenhaus theorem provides a sufficient condition for the existence of a decomposition as a semidirect product (also known as splitting extension). Inner semidirect product definitions Given a group with identity element , a subgroup , and a normal subgroup , the following statements ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]