Affine Dynkin Diagrams
   HOME
*





Affine Dynkin Diagrams
Affine may describe any of various topics concerned with connections or affinities. It may refer to: * Affine, a relative by marriage in law and anthropology * Affine cipher, a special case of the more general substitution cipher * Affine combination, a certain kind of constrained linear combination * Affine connection, a connection on the tangent bundle of a differentiable manifold * Affine Coordinate System, a coordinate system that can be viewed as a Cartesian coordinate system where the axes have been placed so that they are not necessarily orthogonal to each other. See tensor. * Affine differential geometry, a geometry that studies differential invariants under the action of the special affine group * Affine gap penalty, the most widely used scoring function used for sequence alignment, especially in bioinformatics * Affine geometry, a geometry characterized by parallel lines * Affine group, the group of all invertible affine transformations from any affine space over a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Affine
Affine may describe any of various topics concerned with connections or affinities. It may refer to: * Affine, a relative by marriage in law and anthropology * Affine cipher, a special case of the more general substitution cipher * Affine combination, a certain kind of constrained linear combination * Affine connection, a connection on the tangent bundle of a differentiable manifold * Affine Coordinate System, a coordinate system that can be viewed as a Cartesian coordinate system where the axes have been placed so that they are not necessarily orthogonal to each other. See tensor. * Affine differential geometry, a geometry that studies differential invariants under the action of the special affine group * Affine gap penalty, the most widely used scoring function used for sequence alignment, especially in bioinformatics * Affine geometry, a geometry characterized by parallel lines * Affine group, the group of all invertible affine transformations from any affine space over a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Affine Logic
Affine logic is a substructural logic whose proof theory rejects the structural rule of contraction. It can also be characterized as linear logic with weakening. The name "affine logic" is associated with linear logic, to which it differs by allowing the weakening rule. Jean-Yves Girard introduced the name as part of the geometry of interaction semantics of linear logic, which characterizes linear logic in terms of linear algebra; here he alludes to affine transformations on vector spaces. Affine logic predated linear logic. V. N. Grishin used this logic in 1974, after observing that Russell's paradox cannot be derived in a set theory without contraction, even with an unbounded comprehension axiom.Cf. Frederic Fitch's demonstrably consistent set theory Likewise, the logic formed the basis of a decidable sub-theory of predicate logic, called 'Direct logic' (Ketonen & Wehrauch, 1984; Ketonen & Bellin, 1989). Affine logic can be embedded into linear logic by rewriting th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Affine Transformation
In Euclidean geometry, an affine transformation or affinity (from the Latin, ''affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More generally, an affine transformation is an automorphism of an affine space (Euclidean spaces are specific affine spaces), that is, a function which maps an affine space onto itself while preserving both the dimension of any affine subspaces (meaning that it sends points to points, lines to lines, planes to planes, and so on) and the ratios of the lengths of parallel line segments. Consequently, sets of parallel affine subspaces remain parallel after an affine transformation. An affine transformation does not necessarily preserve angles between lines or distances between points, though it does preserve ratios of distances between points lying on a straight line. If is the point set of an affine space, then every affine transformation on can be repre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Affine Space
In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related to parallelism and ratio of lengths for parallel line segments. In an affine space, there is no distinguished point that serves as an origin. Hence, no vector has a fixed origin and no vector can be uniquely associated to a point. In an affine space, there are instead ''displacement vectors'', also called ''translation'' vectors or simply ''translations'', between two points of the space. Thus it makes sense to subtract two points of the space, giving a translation vector, but it does not make sense to add two points of the space. Likewise, it makes sense to add a displacement vector to a point of an affine space, resulting in a new point translated from the starting point by that vector. Any vector space may be viewed as an affine spa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Morphism Of Schemes
In algebraic geometry, a morphism of schemes generalizes a morphism of algebraic varieties just as a scheme generalizes an algebraic variety. It is, by definition, a morphism in the category of schemes. A morphism of algebraic stacks generalizes a morphism of schemes. Definition By definition, a morphism of schemes is just a morphism of locally ringed spaces. A scheme, by definition, has open affine charts and thus a morphism of schemes can also be described in terms of such charts (compare the definition of morphism of varieties). Let ƒ:''X''→''Y'' be a morphism of schemes. If ''x'' is a point of ''X'', since ƒ is continuous, there are open affine subsets ''U'' = Spec ''A'' of ''X'' containing ''x'' and ''V'' = Spec ''B'' of ''Y'' such that ƒ(''U'') ⊆ ''V''. Then ƒ: ''U'' → ''V'' is a morphism of affine schemes and thus is induced by some ring homomorphism ''B'' → ''A'' (cf. #Affine case.) In fact, one can use this description to "define" a morphism of schemes; o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Affine Morphism
In algebraic geometry, a sheaf of algebras on a ringed space ''X'' is a sheaf of commutative rings on ''X'' that is also a sheaf of \mathcal_X-modules. It is quasi-coherent if it is so as a module. When ''X'' is a scheme, just like a ring, one can take the global Spec of a quasi-coherent sheaf of algebras: this results in the contravariant functor \operatorname_X from the category of quasi-coherent (sheaves of) \mathcal_X-algebras on ''X'' to the category of schemes that are affine over ''X'' (defined below). Moreover, it is an equivalence: the quasi-inverse is given by sending an affine morphism f: Y \to X to f_* \mathcal_Y. Affine morphism A morphism of schemes f: X \to Y is called affine if Y has an open affine cover U_i's such that f^(U_i) are affine. For example, a finite morphism is affine. An affine morphism is quasi-compact and separated; in particular, the direct image of a quasi-coherent sheaf along an affine morphism is quasi-coherent. The base change of an affine m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Affine Scheme
In commutative algebra, the prime spectrum (or simply the spectrum) of a ring ''R'' is the set of all prime ideals of ''R'', and is usually denoted by \operatorname; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings \mathcal. Zariski topology For any ideal ''I'' of ''R'', define V_I to be the set of prime ideals containing ''I''. We can put a topology on \operatorname(R) by defining the collection of closed sets to be :\. This topology is called the Zariski topology. A basis for the Zariski topology can be constructed as follows. For ''f'' ∈ ''R'', define ''D''''f'' to be the set of prime ideals of ''R'' not containing ''f''. Then each ''D''''f'' is an open subset of \operatorname(R), and \ is a basis for the Zariski topology. \operatorname(R) is a compact space, but almost never Hausdorff: in fact, the maximal ideals in ''R'' are precisely the closed points in this topology. By the same reasoning, it is not, in general, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Affine Representation
In mathematics, an affine representation of a topological Lie group ''G'' on an affine space ''A'' is a continuous (smooth) group homomorphism from ''G'' to the automorphism group of ''A'', the affine group Aff(''A''). Similarly, an affine representation of a Lie algebra g on ''A'' is a Lie algebra homomorphism from g to the Lie algebra aff(''A'') of the affine group of ''A''. An example is the action of the Euclidean group E(''n'') on the Euclidean space E''n''. Since the affine group in dimension ''n'' is a matrix group in dimension ''n'' + 1, an affine representation may be thought of as a particular kind of linear representation. We may ask whether a given affine representation has a fixed point in the given affine space ''A''. If it does, we may take that as origin and regard ''A'' as a vector space; in that case, we actually have a linear representation in dimension ''n''. This reduction depends on a group cohomology question, in general. See also * Group acti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Affine Group
In mathematics, the affine group or general affine group of any affine space over a field is the group of all invertible affine transformations from the space into itself. It is a Lie group if is the real or complex field or quaternions. Relation to general linear group Construction from general linear group Concretely, given a vector space , it has an underlying affine space obtained by "forgetting" the origin, with acting by translations, and the affine group of can be described concretely as the semidirect product of by , the general linear group of : :\operatorname(V) = V \rtimes \operatorname(V) The action of on is the natural one (linear transformations are automorphisms), so this defines a semidirect product. In terms of matrices, one writes: :\operatorname(n,K) = K^n \rtimes \operatorname(n,K) where here the natural action of on is matrix multiplication of a vector. Stabilizer of a point Given the affine group of an affine space , the stabilizer of a point ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Affinity (law)
In law and in cultural anthropology, affinity is the kinship relationship created or that exists between two people as a result of someone's marriage. It is the relationship which each party to a marriage has to the relations of the other partner to the marriage, but it does not cover the marital relationship itself. Laws, traditions and customs relating to affinity vary considerably, sometimes ceasing with the death of one of the marriage partners through whom affinity is traced, and sometimes with the divorce of the marriage partners. In addition to kinship by marriage, "affinity" can sometimes also include kinship by adoption or a step relationship. Unlike blood relationships (consanguinity), which may have genetic consequences, affinity is essentially a social or moral construct, at times backed by legal consequences. In law, affinity may be relevant in relation to prohibitions on incestuous sexual relations and in relation to whether particular couples are prohibited ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Affine Geometry
In mathematics, affine geometry is what remains of Euclidean geometry when ignoring (mathematicians often say "forgetting") the metric notions of distance and angle. As the notion of ''parallel lines'' is one of the main properties that is independent of any metric, affine geometry is often considered as the study of parallel lines. Therefore, Playfair's axiom (Given a line L and a point P not on L, there is exactly one line parallel to L that passes through P.) is fundamental in affine geometry. Comparisons of figures in affine geometry are made with affine transformations, which are mappings that preserve alignment of points and parallelism of lines. Affine geometry can be developed in two ways that are essentially equivalent. In synthetic geometry, an affine space is a set of ''points'' to which is associated a set of lines, which satisfy some axioms (such as Playfair's axiom). Affine geometry can also be developed on the basis of linear algebra. In this context an affine s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gap Penalty
A Gap penalty is a method of scoring alignments of two or more sequences. When aligning sequences, introducing gaps in the sequences can allow an alignment algorithm to match more terms than a gap-less alignment can. However, minimizing gaps in an alignment is important to create a useful alignment. Too many gaps can cause an alignment to become meaningless. Gap penalties are used to adjust alignment scores based on the number and length of gaps. The five main types of gap penalties are constant, linear, affine, convex, and profile-based. Applications * Genetic sequence alignment - In bioinformatics, gaps are used to account for genetic mutations occurring from insertions or deletions in the sequence, sometimes referred to as ''indels''. Insertions or deletions can occur due to single mutations, unbalanced crossover in meiosis, slipped strand mispairing, and chromosomal translocation. The notion of a gap in an alignment is important in many biological applications, since the i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]