Adams Resolution
   HOME
*





Adams Resolution
In mathematics, specifically algebraic topology, there is a resolution analogous to free resolutions of spectra yielding a tool for constructing the Adams spectral sequence. Essentially, the idea is to take a connective spectrum of finite type X and iteratively resolve with other spectra that are in the homotopy kernel of a map resolving the cohomology classes in H^*(X;\mathbb/p) using Eilenberg–MacLane spectra. This construction can be generalized using a spectrum E, such as the Brown–Peterson spectrum BP, or the complex cobordism spectrum MU, and is used in the construction of the Adams–Novikov spectral sequencepg 49. Construction The mod p Adams resolution (X_s,g_s) for a spectrum X is a certain "chain-complex" of spectra induced from recursively looking at the fibers of maps into generalized Eilenberg–Maclane spectra giving generators for the cohomology of resolved spectrapg 43. By this, we start by considering the map\begin X \\ \downarrow \\ K \endwhere K is an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up to homeomorphism, though usually most classify up to Homotopy#Homotopy equivalence and null-homotopy, homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group. Main branches of algebraic topology Below are some of the main areas studied in algebraic topology: Homotopy groups In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, which records information about loops in a space. Intuitively, homotopy gro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Free Resolution
In mathematics, and more specifically in homological algebra, a resolution (or left resolution; dually a coresolution or right resolution) is an exact sequence of modules (or, more generally, of objects of an abelian category), which is used to define invariants characterizing the structure of a specific module or object of this category. When, as usually, arrows are oriented to the right, the sequence is supposed to be infinite to the left for (left) resolutions, and to the right for right resolutions. However, a finite resolution is one where only finitely many of the objects in the sequence are non-zero; it is usually represented by a finite exact sequence in which the leftmost object (for resolutions) or the rightmost object (for coresolutions) is the zero-object. Generally, the objects in the sequence are restricted to have some property ''P'' (for example to be free). Thus one speaks of a ''P resolution''. In particular, every module has free resolutions, projective resol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spectrum (topology)
In algebraic topology, a branch of mathematics, a spectrum is an object representable functor, representing a Cohomology#Generalized cohomology theories, generalized cohomology theory. Every such cohomology theory is representable, as follows from Brown's representability theorem. This means that, given a cohomology theory\mathcal^*:\text^ \to \text,there exist spaces E^k such that evaluating the cohomology theory in degree k on a space X is equivalent to computing the homotopy classes of maps to the space E^k, that is\mathcal^k(X) \cong \left[X, E^k\right].Note there are several different category (mathematics), categories of spectra leading to many technical difficulties, but they all determine the same homotopy category, known as the stable homotopy category. This is one of the key points for introducing spectra because they form a natural home for stable homotopy theory. The definition of a spectrum There are many variations of the definition: in general, a ''spectrum'' is any s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Adams Spectral Sequence
In mathematics, the Adams spectral sequence is a spectral sequence introduced by which computes the stable homotopy groups of topological spaces. Like all spectral sequences, it is a computational tool; it relates homology theory to what is now called stable homotopy theory. It is a reformulation using homological algebra, and an extension, of a technique called 'killing homotopy groups' applied by the French school of Henri Cartan and Jean-Pierre Serre. Motivation For everything below, once and for all, we fix a prime ''p''. All spaces are assumed to be CW complexes. The ordinary cohomology groups H^*(X) are understood to mean H^*(X; \Z/p\Z). The primary goal of algebraic topology is to try to understand the collection of all maps, up to homotopy, between arbitrary spaces ''X'' and ''Y''. This is extraordinarily ambitious: in particular, when ''X'' is S^n, these maps form the ''n''th homotopy group of ''Y''. A more reasonable (but still very difficult!) goal is to understand ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eilenberg–Maclane Spectrum
In mathematics, specifically algebraic topology, there is a distinguished class of spectra called Eilenberg–Maclane spectra HA for any Abelian group Apg 134. Note, this construction can be generalized to commutative rings R as well from its underlying Abelian group. These are an important class of spectra because they model ordinary integral cohomology and cohomology with coefficients in an abelian group. In addition, they are a lift of the homological structure in the derived category D(\mathbb) of abelian groups in the homotopy category of spectra. In addition, these spectra can be used to construct resolutions of spectra, called Adams resolutions, which are used in the construction of the Adams spectral sequence. Definition For a fixed abelian group A let HA denote the set of Eilenberg–MacLane spaces \with the adjunction map coming from the property of loop spaces of Eilenberg–Maclane spaces: namely, because there is a homotopy equivalenceK(A,n-1)\simeq \Omega K(A,n)we c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Brown–Peterson Cohomology
In mathematics, Brown–Peterson cohomology is a generalized cohomology theory introduced by , depending on a choice of prime ''p''. It is described in detail by . Its representing spectrum is denoted by BP. Complex cobordism and Quillen's idempotent Brown–Peterson cohomology BP is a summand of MU(''p''), which is complex cobordism MU localized at a prime ''p''. In fact MU''(p)'' is a wedge product of suspensions of BP. For each prime ''p'', Daniel Quillen showed there is a unique idempotent map of ring spectra ε from MUQ(''p'') to itself, with the property that ε( P''n'' is P''n''if ''n''+1 is a power of ''p'', and 0 otherwise. The spectrum BP is the image of this idempotent ε. Structure of BP The coefficient ring \pi_*(\text) is a polynomial algebra over \Z_ on generators v_n in degrees 2(p^n-1) for n\ge 1. \text_*(\text) is isomorphic to the polynomial ring \pi_*(\text) _1, t_2, \ldots/math> over \pi_*(\text) with generators t_i in \text_(\text) of degrees 2 (p^i-1) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Cobordism
In mathematics, complex cobordism is a generalized cohomology theory related to cobordism of manifolds. Its spectrum is denoted by MU. It is an exceptionally powerful cohomology theory, but can be quite hard to compute, so often instead of using it directly one uses some slightly weaker theories derived from it, such as Brown–Peterson cohomology or Morava K-theory, that are easier to compute. The generalized homology and cohomology complex cobordism theories were introduced by using the Thom spectrum. Spectrum of complex cobordism The complex bordism MU^*(X) of a space X is roughly the group of bordism classes of manifolds over X with a complex linear structure on the stable normal bundle. Complex bordism is a generalized homology theory, corresponding to a spectrum MU that can be described explicitly in terms of Thom spaces as follows. The space MU(n) is the Thom space of the universal n-plane bundle over the classifying space BU(n) of the unitary group U(n). The natural inclu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Adams–Novikov Spectral Sequence
In mathematics, the Adams spectral sequence is a spectral sequence introduced by which computes the stable homotopy groups of topological spaces. Like all spectral sequences, it is a computational tool; it relates homology theory to what is now called stable homotopy theory. It is a reformulation using homological algebra, and an extension, of a technique called 'killing homotopy groups' applied by the French school of Henri Cartan and Jean-Pierre Serre. Motivation For everything below, once and for all, we fix a prime ''p''. All spaces are assumed to be CW complexes. The ordinary cohomology groups H^*(X) are understood to mean H^*(X; \Z/p\Z). The primary goal of algebraic topology is to try to understand the collection of all maps, up to homotopy, between arbitrary spaces ''X'' and ''Y''. This is extraordinarily ambitious: in particular, when ''X'' is S^n, these maps form the ''n''th homotopy group of ''Y''. A more reasonable (but still very difficult!) goal is to understand th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homotopy Fiber
In mathematics, especially homotopy theory, the homotopy fiber (sometimes called the mapping fiber)Joseph J. Rotman, ''An Introduction to Algebraic Topology'' (1988) Springer-Verlag ''(See Chapter 11 for construction.)'' is part of a construction that associates a fibration to an arbitrary continuous function of topological spaces f:A \to B. It acts as a homotopy theoretic kernel of a mapping of topological spaces due to the fact it yields a long exact sequence of homotopy groups\cdots \to \pi_(B) \to \pi_n(\text(f)) \to \pi_n(A) \to \pi_n(B) \to \cdotsMoreover, the homotopy fiber can be found in other contexts, such as homological algebra, where the distinguished triangleC(f)_\bullet 1\to A_\bullet \to B_\bullet \xrightarrowgives a long exact sequence analogous to the long exact sequence of homotopy groups. There is a dual construction called the homotopy cofiber. Construction The homotopy fiber has a simple description for a continuous map f:A \to B. If we replace f by a fibra ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dual Steenrod Algebra
In algebraic topology, through an algebraic operation (dualization), there is an associated commutative algebra from the noncommutative Steenrod algebras called the dual Steenrod algebra. This dual algebra has a number of surprising benefits, such as being commutative and provided technical tools for computing the Adams spectral sequence in many cases (such as \pi_*(MU)pg 61-62) with much ease. Definition Recallpg 59 that the Steenrod algebra \mathcal_p^* (also denoted \mathcal^*) is a graded noncommutative Hopf algebra which is cocommutative, meaning its comultiplication is cocommutative. This implies if we take the dual Hopf algebra, denoted \mathcal_, or just \mathcal_*, then this gives a graded-commutative algebra which has a noncommutative comultiplication. We can summarize this duality through dualizing a commutative diagram of the Steenrod's Hopf algebra structure:\mathcal_p^* \xrightarrow \mathcal_p^* \otimes \mathcal_p^* \xrightarrow \mathcal_p^*If we dualize we get maps\m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]