In
algebraic topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
, through an algebraic operation (dualization), there is an associated commutative algebra
from the noncommutative Steenrod algebras called the dual Steenrod algebra. This dual algebra has a number of surprising benefits, such as being commutative and provided technical tools for computing the Adams spectral sequence in many cases (such as
pg 61-62) with much ease.
Definition
Recall
pg 59 that the Steenrod algebra
(also denoted
) is a graded noncommutative
Hopf algebra Hopf is a German surname. Notable people with the surname include:
*Eberhard Hopf (1902–1983), Austrian mathematician
*Hans Hopf (1916–1993), German tenor
*Heinz Hopf (1894–1971), German mathematician
*Heinz Hopf (actor) (1934–2001), Swedis ...
which is cocommutative, meaning its comultiplication is cocommutative. This implies if we take the dual Hopf algebra, denoted
, or just
, then this gives a graded-commutative algebra which has a noncommutative comultiplication. We can summarize this duality through dualizing a commutative diagram of the Steenrod's Hopf algebra structure:
If we dualize we get maps
giving the main structure maps for the dual Hopf algebra. It turns out there's a nice structure theorem for the dual Hopf algebra, separated by whether the prime is
or odd.
Case of p=2
In this case, the dual Steenrod algebra is a graded commutative polynomial algebra