HOME
*





Ax–Grothendieck Theorem
In mathematics, the Ax–Grothendieck theorem is a result about injectivity and surjectivity of polynomials that was proved independently by James Ax and Alexander Grothendieck. The theorem is often given as this special case: If ''P'' is an injective polynomial function from an ''n''-dimensional complex vector space to itself then ''P'' is bijective. That is, if ''P'' always maps distinct arguments to distinct values, then the values of ''P'' cover all of C''n''. The full theorem generalizes to any algebraic variety over an algebraically closed field. Proof via finite fields Grothendieck's proof of the theorem is based on proving the analogous theorem for finite fields and their algebraic closures. That is, for any field ''F'' that is itself finite or that is the closure of a finite field, if a polynomial ''P'' from ''Fn'' to itself is injective then it is bijective. If ''F'' is a finite field, then ''Fn'' is finite. In this case the theorem is true for trivial reasons having no ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Injectivity
In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contrapositive statement.) In other words, every element of the function's codomain is the image of one element of its domain. The term must not be confused with that refers to bijective functions, which are functions such that each element in the codomain is an image of exactly one element in the domain. A homomorphism between algebraic structures is a function that is compatible with the operations of the structures. For all common algebraic structures, and, in particular for vector spaces, an is also called a . However, in the more general context of category theory, the definition of a monomorphism differs from that of an injective homomorphism. This is thus a theorem that they are equivalent for algebraic structures; see for more detail ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hilbert's Nullstellensatz
In mathematics, Hilbert's Nullstellensatz (German for "theorem of zeros," or more literally, "zero-locus-theorem") is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields. This relationship was discovered by David Hilbert, who proved the Nullstellensatz in his second major paper on invariant theory in 1893 (following his seminal 1890 paper in which he proved Hilbert's basis theorem). Formulation Let ''k'' be a field (such as the rational numbers) and ''K'' be an algebraically closed field extension (such as the complex numbers). Consider the polynomial ring k _1, \ldots, X_n/math> and let ''I'' be an ideal in this ring. The algebraic set V(''I'') defined by this ideal consists of all ''n''-tuples x = (''x''1,...,''x''''n'') in ''Kn'' such that ''f''(x) = 0 for all ''f'' in ''I''. Hilbert's Nullstellensatz st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Amenable Group
In mathematics, an amenable group is a locally compact topological group ''G'' carrying a kind of averaging operation on bounded functions that is invariant under translation by group elements. The original definition, in terms of a finitely additive measure (or mean) on subsets of ''G'', was introduced by John von Neumann in 1929 under the German name "messbar" ("measurable" in English) in response to the Banach–Tarski paradox. In 1949 Mahlon M. Day introduced the English translation "amenable", apparently as a pun on "''mean''". The amenability property has a large number of equivalent formulations. In the field of analysis, the definition is in terms of linear functionals. An intuitive way to understand this version is that the support of the regular representation is the whole space of irreducible representations. In discrete group theory, where ''G'' has the discrete topology, a simpler definition is used. In this setting, a group is amenable if one can say what proport ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cellular Automaton
A cellular automaton (pl. cellular automata, abbrev. CA) is a discrete model of computation studied in automata theory. Cellular automata are also called cellular spaces, tessellation automata, homogeneous structures, cellular structures, tessellation structures, and iterative arrays. Cellular automata have found application in various areas, including physics, theoretical biology and microstructure modeling. A cellular automaton consists of a regular grid of ''cells'', each in one of a finite number of '' states'', such as ''on'' and ''off'' (in contrast to a coupled map lattice). The grid can be in any finite number of dimensions. For each cell, a set of cells called its ''neighborhood'' is defined relative to the specified cell. An initial state (time ''t'' = 0) is selected by assigning a state for each cell. A new ''generation'' is created (advancing ''t'' by 1), according to some fixed ''rule'' (generally, a mathematical function) that determines the new state of e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Garden Of Eden (cellular Automaton)
In a cellular automaton, a Garden of Eden is a configuration that has no predecessor. It can be the initial configuration of the automaton but cannot arise in any other way. John Tukey named these configurations after the Garden of Eden in Abrahamic religions, which was created out of nowhere. A Garden of Eden is determined by the state of every cell in the automaton (usually a one- or two-dimensional infinite square lattice of cells). However, for any Garden of Eden there is a finite pattern (a subset of cells and their states, called an ''orphan'') with the same property of having no predecessor, no matter how the remaining cells are filled in. A configuration of the whole automaton is a Garden of Eden if and only if it contains an orphan. For one-dimensional cellular automata, orphans and Gardens of Eden can be found by an efficient algorithm, but for higher dimensions this is an undecidable problem. Nevertheless, computer searches have succeeded in finding these patterns ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Radicial Morphism
In algebraic geometry, a morphism of schemes :''f'': ''X'' → ''Y'' is called radicial or universally injective, if, for every field ''K'' the induced map ''X''(''K'') → ''Y''(''K'') is injective. (EGA I, (3.5.4)) This is a generalization of the notion of a purely inseparable extension of fields (sometimes called a radicial extension, which should not be confused with a radical extension.) It suffices to check this for ''K'' algebraically closed. This is equivalent to the following condition: ''f'' is injective on the topological spaces and for every point ''x'' in ''X'', the extension of the residue fields :''k''(''f''(''x'')) ⊂ ''k''(''x'') is radicial, i.e. purely inseparable. It is also equivalent to every base change of ''f'' being injective on the underlying topological spaces. (Thus the term ''universally injective''.) Radicial morphisms are stable under composition, products and base change. If ''gf'' is radicial, so is ''f''. References * , section ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Morphism Of Finite Type
For a homomorphism ''A'' → ''B'' of commutative rings, ''B'' is called an ''A''-algebra of finite type if ''B'' is a finitely generated as an ''A''-algebra. It is much stronger for ''B'' to be a finite ''A''-algebra, which means that ''B'' is finitely generated as an ''A''-module. For example, for any commutative ring ''A'' and natural number ''n'', the polynomial ring ''A'' 'x''1, ..., ''xn''is an ''A''-algebra of finite type, but it is not a finite ''A''-module unless ''A'' = 0 or ''n'' = 0. Another example of a finite-type morphism which is not finite is \mathbb \to \mathbb x,y]/(y^2 - x^3 - t). The analogous notion in terms of schemes is: a morphism ''f'': ''X'' → ''Y'' of schemes is of finite type if ''Y'' has a covering by affine open subschemes ''Vi'' = Spec ''Ai'' such that ''f''−1(''Vi'') has a finite covering by affine open subschemes ''Uij'' = Spec ''Bij'' with ''Bij'' an ''Ai''-algebra of finite type. One also says that ''X'' is of finite type over ''Y''. For exa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Picard Theorem
In complex analysis, Picard's great theorem and Picard's little theorem are related theorems about the range of an analytic function. They are named after Émile Picard. The theorems Little Picard Theorem: If a function f: \mathbb \to\mathbb is entire and non-constant, then the set of values that f(z) assumes is either the whole complex plane or the plane minus a single point. Sketch of Proof: Picard's original proof was based on properties of the modular lambda function, usually denoted by λ, and which performs, using modern terminology, the holomorphic universal covering of the twice punctured plane by the unit disc. This function is explicitly constructed in the theory of elliptic functions. If ''f'' omits two values, then the composition of ''f'' with the inverse of the modular function maps the plane into the unit disc which implies that ''f'' is constant by Liouville's theorem. This theorem is a significant strengthening of Liouville's theorem which states that the i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Analytic Function
In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions. A function is analytic if and only if its Taylor series about ''x''0 converges to the function in some neighborhood for every ''x''0 in its domain. Definitions Formally, a function f is ''real analytic'' on an open set D in the real line if for any x_0\in D one can write : f(x) = \sum_^\infty a_ \left( x-x_0 \right)^ = a_0 + a_1 (x-x_0) + a_2 (x-x_0)^2 + a_3 (x-x_0)^3 + \cdots in which the coefficients a_0, a_1, \dots are real numbers and the series is convergent to f(x) for x in a neighborhood of x_0. Alternatively, a real analytic function is an infinitely differentiable function such that the Taylor series at any point x_0 in its domain ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Armand Borel
Armand Borel (21 May 1923 – 11 August 2003) was a Swiss mathematician, born in La Chaux-de-Fonds, and was a permanent professor at the Institute for Advanced Study in Princeton, New Jersey, United States from 1957 to 1993. He worked in algebraic topology, in the theory of Lie groups, and was one of the creators of the contemporary theory of linear algebraic groups. Biography He studied at the ETH Zürich, where he came under the influence of the topologist Heinz Hopf and Lie-group theorist Eduard Stiefel. He was in Paris from 1949: he applied the Leray spectral sequence to the topology of Lie groups and their classifying spaces, under the influence of Jean Leray and Henri Cartan. With Hirzebruch, he significantly developed the theory of characteristic classes in the early 1950s. He collaborated with Jacques Tits in fundamental work on algebraic groups, and with Harish-Chandra on their arithmetic subgroups. In an algebraic group ''G'' a ''Borel subgroup'' ''H'' is one mini ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Compactness Theorem
In mathematical logic, the compactness theorem states that a set of first-order sentences has a model if and only if every finite subset of it has a model. This theorem is an important tool in model theory, as it provides a useful (but generally not effective) method for constructing models of any set of sentences that is finitely consistent. The compactness theorem for the propositional calculus is a consequence of Tychonoff's theorem (which says that the product of compact spaces is compact) applied to compact Stone spaces, hence the theorem's name. Likewise, it is analogous to the finite intersection property characterization of compactness in topological spaces: a collection of closed sets in a compact space has a non-empty intersection if every finite subcollection has a non-empty intersection. The compactness theorem is one of the two key properties, along with the downward Löwenheim–Skolem theorem, that is used in Lindström's theorem to characterize first-order logic. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Model Theory
In mathematical logic, model theory is the study of the relationship between formal theories (a collection of sentences in a formal language expressing statements about a mathematical structure), and their models (those structures in which the statements of the theory hold). The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory. Compared to other areas of mathematical logic such as proof theory, model theory is often less concerned with formal rigour and closer in spirit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]