HOME
*





Automorphic Collineations
Automorphic may refer to *Automorphic number, in mathematics *Automorphic form, in mathematics * Automorphic representation, in mathematics * Automorphic L-function, in mathematics *Automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms ..., in mathematics * Rock microstructure#Crystal shapes {{disambig ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Automorphic Number
In mathematics, an automorphic number (sometimes referred to as a circular number) is a natural number in a given number base b whose square "ends" in the same digits as the number itself. Definition and properties Given a number base b, a natural number n with k digits is an automorphic number if n is a fixed point of the polynomial function f(x) = x^2 over \mathbb/b^k\mathbb, the ring of integers modulo b^k. As the inverse limit of \mathbb/b^k\mathbb is \mathbb_b, the ring of b-adic integers, automorphic numbers are used to find the numerical representations of the fixed points of f(x) = x^2 over \mathbb_b. For example, with b = 10, there are four 10-adic fixed points of f(x) = x^2, the last 10 digits of which are one of these : \ldots 0000000000 : \ldots 0000000001 : \ldots 8212890625 : \ldots 1787109376 Thus, the automorphic numbers in base 10 are 0, 1, 5, 6, 25, 76, 376, 625, 9376, 90625, 109376, 890625, 2890625, 7109376, 12890625, 87109376, 212890625, 787109376, 17871 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Automorphic Form
In harmonic analysis and number theory, an automorphic form is a well-behaved function from a topological group ''G'' to the complex numbers (or complex vector space) which is invariant under the action of a discrete subgroup \Gamma \subset G of the topological group. Automorphic forms are a generalization of the idea of periodic functions in Euclidean space to general topological groups. Modular forms are holomorphic automorphic forms defined over the groups SL(2, R) or PSL(2, R) with the discrete subgroup being the modular group, or one of its congruence subgroups; in this sense the theory of automorphic forms is an extension of the theory of modular forms. More generally, one can use the adelic approach as a way of dealing with the whole family of congruence subgroups at once. From this point of view, an automorphic form over the group ''G''(A''F''), for an algebraic group ''G'' and an algebraic number field ''F'', is a complex-valued function on ''G''(A''F'') that is left ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Automorphic Representation
In harmonic analysis and number theory, an automorphic form is a well-behaved function from a topological group ''G'' to the complex numbers (or complex vector space) which is invariant under the action of a discrete subgroup \Gamma \subset G of the topological group. Automorphic forms are a generalization of the idea of periodic functions in Euclidean space to general topological groups. Modular forms are holomorphic automorphic forms defined over the groups SL(2, R) or PSL(2, R) with the discrete subgroup being the modular group, or one of its congruence subgroups; in this sense the theory of automorphic forms is an extension of the theory of modular forms. More generally, one can use the adelic approach as a way of dealing with the whole family of congruence subgroups at once. From this point of view, an automorphic form over the group ''G''(A''F''), for an algebraic group ''G'' and an algebraic number field ''F'', is a complex-valued function on ''G''(A''F'') that is le ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Automorphic L-function
In mathematics, an automorphic ''L''-function is a function ''L''(''s'',π,''r'') of a complex variable ''s'', associated to an automorphic representation π of a reductive group ''G'' over a global field and a finite-dimensional complex representation ''r'' of the Langlands dual group ''L''''G'' of ''G'', generalizing the Dirichlet L-series of a Dirichlet character and the Mellin transform of a modular form. They were introduced by . and gave surveys of automorphic L-functions. Properties Automorphic L-functions should have the following properties (which have been proved in some cases but are still conjectural in other cases). The L-function L(s, \pi, r) should be a product over the places v of F of local L functions. L(s, \pi, r) = \prod_v L(s, \pi_v, r_v) Here the automorphic representation \pi = \otimes\pi_v is a tensor product of the representations \pi_v of local groups. The L-function is expected to have an analytic continuation as a meromorphic function of all comp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Automorphism
In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms of an object forms a group, called the automorphism group. It is, loosely speaking, the symmetry group of the object. Definition In the context of abstract algebra, a mathematical object is an algebraic structure such as a group, ring, or vector space. An automorphism is simply a bijective homomorphism of an object with itself. (The definition of a homomorphism depends on the type of algebraic structure; see, for example, group homomorphism, ring homomorphism, and linear operator.) The identity morphism (identity mapping) is called the trivial automorphism in some contexts. Respectively, other (non-identity) automorphisms are called nontrivial automorphisms. The exact definition of an automorphism depends on the type of "mathematical ob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]