In
harmonic analysis and
number theory
Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Mat ...
, an automorphic form is a well-behaved function from a
topological group
In mathematics, topological groups are logically the combination of groups and topological spaces, i.e. they are groups and topological spaces at the same time, such that the continuity condition for the group operations connects these two st ...
''G'' to the complex numbers (or complex
vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
) which is invariant under the
action
Action may refer to:
* Action (narrative), a literary mode
* Action fiction, a type of genre fiction
* Action game, a genre of video game
Film
* Action film, a genre of film
* ''Action'' (1921 film), a film by John Ford
* ''Action'' (1980 fil ...
of a
discrete subgroup
In mathematics, a topological group ''G'' is called a discrete group if there is no limit point in it (i.e., for each element in ''G'', there is a neighborhood which only contains that element). Equivalently, the group ''G'' is discrete if and on ...
of the topological group. Automorphic forms are a generalization of the idea of
periodic function
A periodic function is a function that repeats its values at regular intervals. For example, the trigonometric functions, which repeat at intervals of 2\pi radians, are periodic functions. Periodic functions are used throughout science to des ...
s in Euclidean space to general topological groups.
Modular forms are holomorphic automorphic forms defined over the groups
SL(2, R) or
PSL(2, R) with the discrete subgroup being the
modular group, or one of its
congruence subgroup
In mathematics, a congruence subgroup of a matrix group with integer entries is a subgroup defined by congruence conditions on the entries. A very simple example would be invertible 2 × 2 integer matrices of determinant 1, in which the ...
s; in this sense the theory of automorphic forms is an extension of the theory of modular forms. More generally, one can use the
adelic approach as a way of dealing with the whole family of
congruence subgroup
In mathematics, a congruence subgroup of a matrix group with integer entries is a subgroup defined by congruence conditions on the entries. A very simple example would be invertible 2 × 2 integer matrices of determinant 1, in which the ...
s at once. From this point of view, an automorphic form over the group ''G''(A
''F''), for an algebraic group ''G'' and an algebraic number field ''F'', is a complex-valued function on ''G''(A
''F'') that is left invariant under ''G''(''F'') and satisfies certain smoothness and growth conditions.
Poincaré first discovered automorphic forms as generalizations of
trigonometric
Trigonometry () is a branch of mathematics that studies relationships between side lengths and angles of triangles. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies. ...
and
elliptic functions. Through the
Langlands conjectures
In representation theory and algebraic number theory, the Langlands program is a web of far-reaching and influential conjectures about connections between number theory and geometry. Proposed by , it seeks to relate Galois groups in algebraic nu ...
automorphic forms play an important role in modern number theory.
Definition
In
mathematics, the notion of factor of automorphy arises for a
group
A group is a number of persons or things that are located, gathered, or classed together.
Groups of people
* Cultural group, a group whose members share the same cultural identity
* Ethnic group, a group whose members share the same ethnic ide ...
acting on a
complex-analytic manifold
In differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in \mathbb^n, such that the transition maps are holomorphic.
The term complex manifold is variously used to mean a ...
. Suppose a group
acts on a complex-analytic manifold
. Then,
also acts on the space of
holomorphic functions from
to the complex numbers. A function
is termed an ''automorphic form'' if the following holds:
:
where
is an everywhere nonzero holomorphic function. Equivalently, an automorphic form is a function whose divisor is invariant under the action of
.
The ''factor of automorphy'' for the automorphic form
is the function
. An ''automorphic function'' is an automorphic form for which
is the identity.
An automorphic form is a function ''F'' on ''G'' (with values in some fixed finite-dimensional
vector space
In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called '' vectors'', may be added together and multiplied ("scaled") by numbers called ''scalars''. Scalars are often real numbers, but can ...
''V'', in the vector-valued case), subject to three kinds of conditions:
# to transform under translation by elements
according to the given
factor of automorphy
In mathematics, an automorphic function is a function on a space that is invariant under the action of some group, in other words a function on the quotient space. Often the space is a complex manifold and the group is a discrete group.
Facto ...
''j'';
# to be an
eigenfunction
In mathematics, an eigenfunction of a linear operator ''D'' defined on some function space is any non-zero function f in that space that, when acted upon by ''D'', is only multiplied by some scaling factor called an eigenvalue. As an equation, th ...
of certain
Casimir operator
In mathematics, a Casimir element (also known as a Casimir invariant or Casimir operator) is a distinguished element of the center of the universal enveloping algebra of a Lie algebra. A prototypical example is the squared angular momentum operato ...
s on ''G''; and
# to satisfy a "moderate growth" asymptotic condition a
height function
A height function is a function that quantifies the complexity of mathematical objects. In Diophantine geometry, height functions quantify the size of solutions to Diophantine equations and are typically functions from a set of points on algeb ...
.
It is the first of these that makes ''F'' ''automorphic'', that is, satisfy an interesting
functional equation
In mathematics, a functional equation
is, in the broadest meaning, an equation in which one or several functions appear as unknowns. So, differential equations and integral equations are functional equations. However, a more restricted meaning ...
relating ''F''(''g'') with ''F''(''γg'') for
. In the vector-valued case the specification can involve a finite-dimensional
group representation
In the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used to ...
ρ acting on the components to 'twist' them. The Casimir operator condition says that some
Laplacians have ''F'' as eigenfunction; this ensures that ''F'' has excellent analytic properties, but whether it is actually a complex-analytic function depends on the particular case. The third condition is to handle the case where ''G''/Γ is not
compact
Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to:
* Interstate compact
* Blood compact, an ancient ritual of the Philippines
* Compact government, a type of colonial rule utilized in British ...
but has
cusp
A cusp is the most pointed end of a curve. It often refers to cusp (anatomy), a pointed structure on a tooth.
Cusp or CUSP may also refer to:
Mathematics
* Cusp (singularity), a singular point of a curve
* Cusp catastrophe, a branch of bifurc ...
s.
The formulation requires the general notion of ''factor of automorphy'' ''j'' for Γ, which is a type of 1-
cocycle in the language of
group cohomology. The values of ''j'' may be complex numbers, or in fact complex square matrices, corresponding to the possibility of vector-valued automorphic forms. The cocycle condition imposed on the factor of automorphy is something that can be routinely checked, when ''j'' is derived from a
Jacobian matrix, by means of the
chain rule
In calculus, the chain rule is a formula that expresses the derivative of the composition of two differentiable functions and in terms of the derivatives of and . More precisely, if h=f\circ g is the function such that h(x)=f(g(x)) for every , ...
.
A more straightforward but technically advanced definition using
class field theory
In mathematics, class field theory (CFT) is the fundamental branch of algebraic number theory whose goal is to describe all the abelian Galois extensions of local and global fields using objects associated to the ground field.
Hilbert is credit ...
, constructs automorphic forms and their correspondent functions as embeddings of
Galois group
In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the po ...
s to their underlying
global field In mathematics, a global field is one of two type of fields (the other one is local field) which are characterized using valuations. There are two kinds of global fields:
* Algebraic number field: A finite extension of \mathbb
*Global function fi ...
extensions. In this formulation, automorphic forms are certain finite invariants, mapping from the
idele class group under the
Artin reciprocity law The Artin reciprocity law, which was established by Emil Artin in a series of papers (1924; 1927; 1930), is a general theorem in number theory that forms a central part of global class field theory. The term "reciprocity law" refers to a long line ...
. Herein, the analytical structure of its
L-function
In mathematics, an ''L''-function is a meromorphic function on the complex plane, associated to one out of several categories of mathematical objects. An ''L''-series is a Dirichlet series, usually convergent on a half-plane, that may give ri ...
allows for generalizations with various
algebro-geometric properties; and the resultant
Langlands program
In representation theory and algebraic number theory, the Langlands program is a web of far-reaching and influential conjectures about connections between number theory and geometry. Proposed by , it seeks to relate Galois groups in algebraic num ...
. To oversimplify, automorphic forms in this general perspective, are analytic functionals quantifying the invariance of
number fields in a most abstract sense, therefore indicating the
'primitivity' of their
fundamental structure
In Schenkerian analysis, the fundamental structure (german: Ursatz) describes the structure of a tonal work as it occurs at the most remote (or "background") level and in the most abstract form. A basic elaboration of the tonic triad, it consist ...
. Allowing a powerful mathematical tool for analyzing the invariant constructs of virtually any numerical structure.
Examples of automorphic forms in an explicit unabstracted state are difficult to obtain, though some have directly analytical properties:
- The
Eisenstein series
Eisenstein series, named after German mathematician Gotthold Eisenstein, are particular modular forms with infinite series expansions that may be written down directly. Originally defined for the modular group, Eisenstein series can be generaliz ...
(which is a prototypical
modular form) over certain
field extensions as
Abelian groups
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commut ...
.
- Specific generalizations of
Dirichlet L-functions as
class field-theoretic objects.
- Generally any
harmonic analytic object as a
functor
In mathematics, specifically category theory, a functor is a mapping between categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) are associated to topological spaces, and m ...
over
Galois group
In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the po ...
s which is invariant on its
ideal class group
In number theory, the ideal class group (or class group) of an algebraic number field is the quotient group where is the group of fractional ideals of the ring of integers of , and is its subgroup of principal ideals. The class group is a mea ...
(or
idele In abstract algebra, an adelic algebraic group is a semitopological group defined by an algebraic group ''G'' over a number field ''K'', and the adele ring ''A'' = ''A''(''K'') of ''K''. It consists of the points of ''G'' having values in ''A''; the ...
).
As a general principle, automorphic forms can be thought of as
analytic function
In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex ...
s on
abstract structures, which are invariant with respect to a generalized analogue of their
prime ideal (or an abstracted
irreducible fundamental representation). As mentioned, automorphic functions can be seen as generalizations of modular forms (as therefore
elliptic curve
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If ...
s), constructed by some
zeta function
In mathematics, a zeta function is (usually) a function analogous to the original example, the Riemann zeta function
: \zeta(s) = \sum_^\infty \frac 1 .
Zeta functions include:
* Airy zeta function, related to the zeros of the Airy function
* ...
analogue on an
automorphic structure. In the simplest sense, automorphic forms are
modular forms defined on general
Lie groups; because of their symmetry properties. Therefore in simpler terms, a general function which analyzes the invariance of a structure with respect to its prime
'morphology'.
History
Before this very general setting was proposed (around 1960), there had already been substantial developments of automorphic forms other than modular forms. The case of Γ a
Fuchsian group
In mathematics, a Fuchsian group is a discrete subgroup of PSL(2,R). The group PSL(2,R) can be regarded equivalently as a group of isometries of the hyperbolic plane, or conformal transformations of the unit disc, or conformal transformations o ...
had already received attention before 1900 (see below). The
Hilbert modular forms (also called Hilbert-Blumenthal forms) were proposed not long after that, though a full theory was long in coming. The
Siegel modular form
In mathematics, Siegel modular forms are a major type of automorphic form. These generalize conventional ''elliptic'' modular forms which are closely related to elliptic curves. The complex manifolds constructed in the theory of Siegel modular form ...
s, for which ''G'' is a
symplectic group
In mathematics, the name symplectic group can refer to two different, but closely related, collections of mathematical groups, denoted and for positive integer ''n'' and field F (usually C or R). The latter is called the compact symplectic gro ...
, arose naturally from considering
moduli spaces and
theta function
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field ...
s. The post-war interest in several complex variables made it natural to pursue the idea of automorphic form in the cases where the forms are indeed complex-analytic. Much work was done, in particular by
Ilya Piatetski-Shapiro
Ilya Piatetski-Shapiro (Hebrew: איליה פיאטצקי-שפירו; russian: Илья́ Ио́сифович Пяте́цкий-Шапи́ро; 30 March 1929 – 21 February 2009) was a Soviet-born Israeli mathematician. During a career that sp ...
, in the years around 1960, in creating such a theory. The theory of the
Selberg trace formula
In mathematics, the Selberg trace formula, introduced by , is an expression for the character of the unitary representation of a Lie group on the space of square-integrable functions, where is a cofinite discrete group. The character is given b ...
, as applied by others, showed the considerable depth of the theory.
Robert Langlands
Robert Phelan Langlands, (; born October 6, 1936) is a Canadian mathematician. He is best known as the founder of the Langlands program, a vast web of conjectures and results connecting representation theory and automorphic forms to the study o ...
showed how (in generality, many particular cases being known) the
Riemann–Roch theorem
The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It rel ...
could be applied to the calculation of dimensions of automorphic forms; this is a kind of ''post hoc'' check on the validity of the notion. He also produced the general theory of
Eisenstein series
Eisenstein series, named after German mathematician Gotthold Eisenstein, are particular modular forms with infinite series expansions that may be written down directly. Originally defined for the modular group, Eisenstein series can be generaliz ...
, which corresponds to what in
spectral theory In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces. It is a result ...
terms would be the 'continuous spectrum' for this problem, leaving the
cusp form In number theory, a branch of mathematics, a cusp form is a particular kind of modular form with a zero constant coefficient in the Fourier series expansion.
Introduction
A cusp form is distinguished in the case of modular forms for the modular gro ...
or discrete part to investigate. From the point of view of number theory, the cusp forms had been recognised, since
Srinivasa Ramanujan, as the heart of the matter.
Automorphic representations
The subsequent notion of an "automorphic representation" has proved of great technical value when dealing with ''G'' an
algebraic group
In mathematics, an algebraic group is an algebraic variety endowed with a group structure which is compatible with its structure as an algebraic variety. Thus the study of algebraic groups belongs both to algebraic geometry and group theory.
Ma ...
, treated as an
adelic algebraic group. It does not completely include the automorphic form idea introduced above, in that the
adelic approach is a way of dealing with the whole family of
congruence subgroup
In mathematics, a congruence subgroup of a matrix group with integer entries is a subgroup defined by congruence conditions on the entries. A very simple example would be invertible 2 × 2 integer matrices of determinant 1, in which the ...
s at once. Inside an ''L''
2 space for a quotient of the adelic form of ''G'', an automorphic representation is a representation that is an infinite
tensor product
In mathematics, the tensor product V \otimes W of two vector spaces and (over the same field) is a vector space to which is associated a bilinear map V\times W \to V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of V \otime ...
of representations of
p-adic group
In mathematics, the -adic number system for any prime number extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extensio ...
s, with specific
enveloping algebra representations for the
infinite prime(s). One way to express the shift in emphasis is that the
Hecke operator In mathematics, in particular in the theory of modular forms, a Hecke operator, studied by , is a certain kind of "averaging" operator that plays a significant role in the structure of vector spaces of modular forms and more general automorphic repr ...
s are here in effect put on the same level as the Casimir operators; which is natural from the point of view of
functional analysis
Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. inner product, norm, topology, etc.) and the linear functions defined o ...
, though not so obviously for the number theory. It is this concept that is basic to the formulation of the
Langlands philosophy.
Poincaré on discovery and his work on automorphic functions
One of
Poincaré's first discoveries in mathematics, dating to the 1880s, was automorphic forms. He named them Fuchsian functions, after the mathematician
Lazarus Fuchs
Lazarus Immanuel Fuchs (5 May 1833 – 26 April 1902) was a Jewish-German mathematician who contributed important research in the field of linear differential equations. He was born in Moschin (Mosina) (located in Grand Duchy of Posen) and ...
, because Fuchs was known for being a good teacher and had researched on differential equations and the theory of functions. Poincaré actually developed the concept of these functions as part of his doctoral thesis. Under Poincaré's definition, an automorphic function is one which is analytic in its domain and is invariant under a discrete infinite group of linear fractional transformations. Automorphic functions then generalize both
trigonometric
Trigonometry () is a branch of mathematics that studies relationships between side lengths and angles of triangles. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies. ...
and
elliptic functions.
Poincaré explains how he discovered Fuchsian functions:
See also
*
Automorphic factor In mathematics, an automorphic factor is a certain type of analytic function, defined on subgroups of SL(2,R), appearing in the theory of modular forms. The general case, for general groups, is reviewed in the article 'factor of automorphy'.
De ...
*
Factor of automorphy
In mathematics, an automorphic function is a function on a space that is invariant under the action of some group, in other words a function on the quotient space. Often the space is a complex manifold and the group is a discrete group.
Facto ...
*
Maass cusp form
* ''
Automorphic Forms on GL(2)'', a book by H. Jacquet and Robert Langlands
*
Jacobi form
In mathematics, a Jacobi form is an automorphic form on the Jacobi group, which is the semidirect product of the symplectic group Sp(n;R) and the Heisenberg group H^_R. The theory was first systematically studied by .
Definition
A Jacobi form of ...
Notes
References
*
*
Henryk Iwaniec
Henryk Iwaniec (born October 9, 1947) is a Polish-American mathematician, and since 1987 a professor at Rutgers University.
Background and education
Iwaniec studied at the University of Warsaw, where he got his PhD in 1972 under Andrzej Schin ...
, ''Spectral Methods of Automorphic Forms, Second Edition'', (2002) (Volume 53 in ''
Graduate Studies in Mathematics''), American Mathematical Society, Providence, RI
* Stephen Gelbart (1975), "Automorphic forms on Adele groups",
*
External links
*
{{Authority control
Lie groups
*