HOME
*





Art Gallery Theorems And Algorithms
''Art Gallery Theorems and Algorithms'' is a mathematical monograph on topics related to the art gallery problem, on finding positions for guards within a polygonal museum floorplan so that all points of the museum are visible to at least one guard, and on related problems in computational geometry concerning polygons. It was written by Joseph O'Rourke, and published in 1987 in the International Series of Monographs on Computer Science of the Oxford University Press. Only 1000 copies were produced before the book went out of print, so to keep this material accessible O'Rourke has made a pdf version of the book available online. Topics The art gallery problem, posed by Victor Klee in 1973, asks for the number of points at which to place guards inside a polygon (representing the floor plan of a museum) so that each point within the polygon is visible to at least one guard. Václav Chvátal provided the first proof that the answer is at most \lceil n/3\rceil for a polygon with n corne ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Art Gallery Problem
The art gallery problem or museum problem is a well-studied visibility problem in computational geometry. It originates from the following real-world problem: In the geometric version of the problem, the layout of the art gallery is represented by a simple polygon and each guard is represented by a point in the polygon. A set S of points is said to guard a polygon if, for every point p in the polygon, there is some q\in S such that the line segment between p and q does not leave the polygon. The art gallery problem can be applied in several domains such as in robotics, when artificial intelligences (AI) need to execute movements depending on their surroundings. Other domains, where this problem is applied, are in image editing, lighting problems of a stage or installation of infrastructures for the warning of natural disasters. Two dimensions There are numerous variations of the original problem that are also referred to as the art gallery problem. In some versions guards ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rectilinear Polygon
A rectilinear polygon is a polygon all of whose sides meet at right angles. Thus the interior angle at each vertex is either 90° or 270°. Rectilinear polygons are a special case of isothetic polygons. In many cases another definition is preferable: a rectilinear polygon is a polygon with sides parallel to the axes of Cartesian coordinates. The distinction becomes crucial when spoken about sets of polygons: the latter definition would imply that sides of all polygons in the set are aligned with the same coordinate axes. Within the framework of the second definition it is natural to speak of horizontal edges and vertical edges of a rectilinear polygon. Rectilinear polygons are also known as orthogonal polygons. Other terms in use are iso-oriented, axis-aligned, and axis-oriented polygons. These adjectives are less confusing when the polygons of this type are rectangles, and the term axis-aligned rectangle is preferred, although orthogonal rectangle and rectilinear rectangle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polygons
In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed ''polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two together, may be called a polygon. The segments of a polygonal circuit are called its '' edges'' or ''sides''. The points where two edges meet are the polygon's '' vertices'' (singular: vertex) or ''corners''. The interior of a solid polygon is sometimes called its ''body''. An ''n''-gon is a polygon with ''n'' sides; for example, a triangle is a 3-gon. A simple polygon is one which does not intersect itself. Mathematicians are often concerned only with the bounding polygonal chains of simple polygons and they often define a polygon accordingly. A polygonal boundary may be allowed to cross over itself, creating star polygons and other self-intersecting polygons. A polygon is a 2-dimensional example of the more general polytope in any number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computational Geometry
Computational geometry is a branch of computer science devoted to the study of algorithms which can be stated in terms of geometry. Some purely geometrical problems arise out of the study of computational geometric algorithms, and such problems are also considered to be part of computational geometry. While modern computational geometry is a recent development, it is one of the oldest fields of computing with a history stretching back to antiquity. Analysis of algorithms, Computational complexity is central to computational geometry, with great practical significance if algorithms are used on very large datasets containing tens or hundreds of millions of points. For such sets, the difference between O(''n''2) and O(''n'' log ''n'') may be the difference between days and seconds of computation. The main impetus for the development of computational geometry as a discipline was progress in computer graphics and computer-aided design and manufacturing (Computer-aided design, CAD/Compu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


David Avis
David Michael Avis (born March 20, 1951) is a Canadians, Canadian and United Kingdom, British computer scientist known for his contributions to geometric computations. Avis is a professor in computational geometry and applied mathematics in the School of Computer Science, McGill University, in Montreal. Since 2010, he belongs to Department of Communications and Computer Engineering, School of Informatics, Kyoto University. Avis received his Ph.D. in 1977 from Stanford University. He has published more than 70 journal papers and articles. Writing with Komei Fukuda, Avis proposed a reverse-search algorithm for the vertex enumeration problem; their algorithm generates all of the vertex (geometry), vertices of a convex polytope. Selected publications References External links School of Computer Science(McGill Univ.)David Avis’ homepage(McGill Univ.)David Avis' homepage(Kyoto Univ.)
1951 births Living people Researchers in geometric algorithms Stanford University Schoo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Herbert Edelsbrunner
Herbert Edelsbrunner (born March 14, 1958) is a computer scientist working in the field of computational geometry, the Arts & Science Professor of Computer Science and Mathematics at Duke University, Professor at the Institute of Science and Technology Austria (ISTA), and the co-founder of Geomagic, Inc. He was the first of only three computer scientists to win the National Science Foundation's Alan T. Waterman Award. Academic biography Edelsbrunner was born in 1958 in Graz, Austria.Who is Who – Cyberworlds 2007
.
He received his Diplom in 1980 and Ph.D. in 1982, both from

picture info

Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can perform automated deductions (referred to as automated reasoning) and use mathematical and logical tests to divert the code execution through various routes (referred to as automated decision-making). Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus". In contrast, a Heuristic (computer science), heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no well-defined correct or optimal result. As an effective method, an algorithm ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Theory
In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are connected by '' edges'' (also called ''links'' or ''lines''). A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics. Definitions Definitions in graph theory vary. The following are some of the more basic ways of defining graphs and related mathematical structures. Graph In one restricted but very common sense of the term, a graph is an ordered pair G=(V,E) comprising: * V, a set of vertices (also called nodes or points); * E \subseteq \, a set of edges (also called links or lines), which are unordered pairs of vertices (that is, an edge is associated with t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computational Complexity
In computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory. Both areas are highly related, as the complexity of an algorithm is always an upper bound on the complexity of the problem solved by this algorithm. Moreover, for designing efficient algorithms, it is often fundamental to compare the complexity of a specific algorithm to the complexity of the problem to be solved. Also, in most cases, the only thing that is known about the complexity of a problem is that it is lower than the c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Visibility Graph
In computational geometry and robot motion planning, a visibility graph is a graph of intervisible locations, typically for a set of points and obstacles in the Euclidean plane. Each node in the graph represents a point location, and each edge represents a visible connection between them. That is, if the line segment connecting two locations does not pass through any obstacle, an edge is drawn between them in the graph. When the set of locations lies in a line, this can be understood as an ordered series. Visibility graphs have therefore been extended to the realm of time series analysis. Applications Visibility graphs may be used to find Euclidean shortest paths among a set of polygonal obstacles in the plane: the shortest path between two obstacles follows straight line segments except at the vertices of the obstacles, where it may turn, so the Euclidean shortest path is the shortest path in a visibility graph that has as its nodes the start and destination points and the verti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Monotone Polygon
In geometry, a polygon ''P'' in the plane is called monotone with respect to a straight line ''L'', if every line orthogonal to ''L'' intersects the boundary of ''P'' at most twice. Similarly, a polygonal chain ''C'' is called monotone with respect to a straight line ''L'', if every line orthogonal to ''L'' intersects ''C'' at most once. For many practical purposes this definition may be extended to allow cases when some edges of ''P'' are orthogonal to ''L'', and a simple polygon may be called monotone if a line segment that connects two points in ''P'' and is orthogonal to ''L'' lies completely in ''P''. Following the terminology for monotone functions, the former definition describes polygons strictly monotone with respect to ''L''. Properties Assume that ''L'' coincides with the ''x''-axis. Then the leftmost and rightmost vertices of a monotone polygon decompose its boundary into two monotone polygonal chains such that when the vertices of any chain are being traversed in th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Star-shaped Polygon
In geometry, a star-shaped polygon is a polygonal region in the plane that is a star domain, that is, a polygon that contains a point from which the entire polygon boundary is visible. Formally, a polygon is star-shaped if there exists a point such that for each point of the segment lies entirely within . The set of all points with this property (that is, the set of points from which all of is visible) is called the kernel of . If a star-shaped polygon is convex, the link distance between any two of its points (the minimum number of sequential line segments sufficient to connect those points) is 1, and so the polygon's link diameter (the maximum link distance over all pairs of points) is 1. If a star-shaped polygon is not convex, the link distance between a point in the kernel and any other point in the polygon is 1, while the link distance between any two points that are in the polygon but outside the kernel is either 1 or 2; in this case the maximum link distance is 2. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]