Visibility Graph
In computational geometry and robot motion planning, a visibility graph is a graph of intervisible locations, typically for a set of points and obstacles in the Euclidean plane. Each node in the graph represents a point location, and each edge represents a visible connection between them. That is, if the line segment connecting two locations does not pass through any obstacle, an edge is drawn between them in the graph. When the set of locations lies in a line, this can be understood as an ordered series. Visibility graphs have therefore been extended to the realm of time series analysis. Applications Visibility graphs may be used to find Euclidean shortest paths among a set of polygonal obstacles in the plane: the shortest path between two obstacles follows straight line segments except at the vertices of the obstacles, where it may turn, so the Euclidean shortest path is the shortest path in a visibility graph that has as its nodes the start and destination points and the ver ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Urban Planning
Urban planning (also called city planning in some contexts) is the process of developing and designing land use and the built environment, including air, water, and the infrastructure passing into and out of urban areas, such as transportation, communications, and distribution networks, and their accessibility. Traditionally, urban planning followed a top-down approach in master planning the physical layout of human settlements. The primary concern was the public welfare, which included considerations of efficiency, sanitation, protection and use of the environment, as well as taking account of effects of the master plans on the social and economic activities. Over time, urban planning has adopted a focus on the social and environmental "bottom lines" that focuses on using planning as a tool to improve the health and well-being of people and maintain sustainability standards. In the early 21st century, urban planning experts such as Jane Jacobs called on urban planners to take ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bitangent
In geometry, a bitangent to a curve is a line that touches in two distinct points and and that has the same direction as at these points. That is, is a tangent line at and at . Bitangents of algebraic curves In general, an algebraic curve will have infinitely many secant lines, but only finitely many bitangents. Bézout's theorem implies that an algebraic plane curve with a bitangent must have degree at least 4. The case of the 28 bitangents of a quartic was a celebrated piece of geometry of the nineteenth century, a relationship being shown to the 27 lines on the cubic surface. Bitangents of polygons The four bitangents of two disjoint convex polygons may be found efficiently by an algorithm based on binary search in which one maintains a binary search pointer into the lists of edges of each polygon and moves one of the pointers left or right at each steps depending on where the tangent lines to the edges at the two pointers cross each other. This bitangent calculati ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dominating Set
In graph theory, a dominating set for a Graph (discrete mathematics), graph is a subset of its vertices, such that any vertex of is in , or has a neighbor in . The domination number is the number of vertices in a smallest dominating set for . The dominating set problem concerns testing whether for a given graph and input ; it is a classical NP-complete decision problem in computational complexity theory. Therefore it is believed that there may be no polynomial-time algorithm, efficient algorithm that can compute for all graphs . However, there are efficient approximation algorithms, as well as efficient exact algorithms for certain graph classes. Dominating sets are of practical interest in several areas. In wireless networking, dominating sets are used to find efficient routes within ad-hoc mobile networks. They have also been used in document summarization, and in designing secure systems for Electrical grid, electrical grids. Formal definition Given an undirected g ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Art Gallery Problem
The art gallery problem or museum problem is a well-studied visibility problem in computational geometry. It originates from the following real-world problem: "In an art gallery, what is the minimum number of guards who together can observe the whole gallery?" In the geometric version of the problem, the layout of the art gallery is represented by a simple polygon and each guard is represented by a point (geometry), point in the polygon. A set S of points is said to guard a polygon if, for every point p in the polygon, there is some q\in S such that the line segment between p and q does not leave the polygon. The art gallery problem can be applied in several domains such as in robotics, when Artificial intelligence, artificial intelligences (AI) need to execute movements depending on their surroundings. Other domains, where this problem is applied, are in image editing, lighting problems of a stage or installation of infrastructures for the warning of natural disasters. Two d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Existential Theory Of The Reals
In mathematical logic, computational complexity theory, and computer science, the existential theory of the reals is the set of all true sentences of the form \exists X_1 \cdots \exists X_n \, F(X_1,\dots, X_n), where the variables X_i are interpreted as having real number values, and where F(X_1,\dots X_n) is a quantifier-free formula involving equalities and inequalities of real polynomials. A sentence of this form is true if it is possible to find values for all of the variables that, when substituted into formula F, make it become true.. The decision problem for the existential theory of the reals is the problem of finding an algorithm that decides, for each such sentence, whether it is true or false. Equivalently, it is the problem of testing whether a given semialgebraic set is non-empty. This decision problem is NP-hard and lies in PSPACE, giving it significantly lower complexity than Alfred Tarski's quantifier elimination procedure for deciding statements in the first-orde ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computational Geometry (journal)
''Computational Geometry'', also known as ''Computational Geometry: Theory and Applications'', is a peer-reviewed mathematics journal for research in theoretical and applied computational geometry, its applications, techniques, and design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects, as well as fundamental problems in various areas of application of computational geometry: in computer graphics, pattern recognition, image processing, robotics, electronic design automation, CAD/CAM, and geographical information systems. The journal was founded in 1991 by Jörg-Rüdiger Sack and Jorge Urrutia.. It is indexed by ''Mathematical Reviews'', Zentralblatt MATH, Science Citation Index, and Current Contents ''Current Contents'' is a rapid alerting service database from Clarivate, formerly the Institute for Scientific Information and Thomson Reuters. It is published online ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cop-win Graph
In graph theory, a cop-win graph is an undirected graph on which the pursuer (cop) can always win a pursuit–evasion game against a robber, with the players taking alternating turns in which they can choose to move along an edge of a graph or stay put, until the cop lands on the robber's vertex. Finite cop-win graphs are also called dismantlable graphs or constructible graphs, because they can be dismantled by repeatedly removing a dominated vertex (one whose Neighbourhood (graph theory), closed neighborhood is a subset of another vertex's neighborhood) or constructed by repeatedly adding such a vertex. The cop-win graphs can be recognized in polynomial time by a greedy algorithm that constructs a dismantling order. They include the chordal graphs, and the graphs that contain a universal vertex. Definitions Pursuit–evasion Cop-win graphs can be defined by a pursuit–evasion game in which two players, a cop and a robber, are positioned at different initial vertices of a given u ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Circle Graph
In graph theory, a circle graph is the intersection graph of a Chord diagram (mathematics), chord diagram. That is, it is an undirected graph whose vertices can be associated with a finite system of Chord (geometry), chords of a circle such that two vertices are adjacent if and only if the corresponding chords cross each other. Algorithmic complexity After earlier polynomial time algorithms, presented an algorithm for recognizing circle graphs in near-linear time. Their method is slower than linear by a factor of the inverse Ackermann function, and is based on lexicographic breadth-first search. The running time comes from a method for maintaining the split decomposition of a graph incrementally, as vertices are added, used as a subroutine in the algorithm. A number of other problems that are NP-complete on general graphs have polynomial time algorithms when restricted to circle graphs. For instance, showed that the treewidth of a circle graph can be determined, and an optim ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Perfect Graph
In graph theory, a perfect graph is a Graph (discrete mathematics), graph in which the Graph coloring, chromatic number equals the size of the maximum clique, both in the graph itself and in every induced subgraph. In all graphs, the chromatic number is greater than or equal to the size of the maximum clique, but they can be far apart. A graph is perfect when these numbers are equal, and remain equal after the deletion of arbitrary subsets of vertices. The perfect graphs include many important families of graphs and serve to unify results relating Graph coloring, colorings and cliques in those families. For instance, in all perfect graphs, the graph coloring problem, maximum clique problem, and maximum independent set problem can all be solved in polynomial time, despite their greater complexity for non-perfect graphs. In addition, several important minimax theorems in combinatorics, including Dilworth's theorem and Mirsky's theorem on partially ordered sets, Kőnig's theorem (gra ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hamiltonian Graph
In the mathematical field of graph theory, a Hamiltonian path (or traceable path) is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle (or Hamiltonian circuit) is a cycle that visits each vertex exactly once. A Hamiltonian path that starts and ends at adjacent vertices can be completed by adding one more edge to form a Hamiltonian cycle, and removing any edge from a Hamiltonian cycle produces a Hamiltonian path. The computational problems of determining whether such paths and cycles exist in graphs are NP-complete; see Hamiltonian path problem for details. Hamiltonian paths and cycles are named after William Rowan Hamilton, who invented the icosian game, now also known as ''Hamilton's puzzle'', which involves finding a Hamiltonian cycle in the edge graph of the dodecahedron. Hamilton solved this problem using the icosian calculus, an algebraic structure based on roots of unity with many similarities to the quaternions (also in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |