Arf–Kervaire Invariant
   HOME





Arf–Kervaire Invariant
In mathematics, the Kervaire invariant is an invariant of a parallelizable manifold, framed (4k+2)-dimensional manifold that measures whether the manifold could be surgery theory, surgically converted into a sphere. This invariant evaluates to 0 if the manifold can be converted to a sphere, and 1 otherwise. This invariant was named after Michel Kervaire who built on work of Cahit Arf. The Kervaire invariant is defined as the Arf invariant of the skew-quadratic form on the middle dimensional homology group. It can be thought of as the simply-connected ''quadratic'' L-theory, L-group L_, and thus analogous to the other invariants from L-theory: the signature (topology), signature, a 4k-dimensional invariant (either symmetric or quadratic, L^ \cong L_), and the De Rham invariant, a (4k+1)-dimensional ''symmetric'' invariant L^. In any given dimension, there are only two possibilities: either all manifolds have Arf–Kervaire invariant equal to 0, or half have Arf–Kervaire invariant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parallelizable Manifold
In mathematics, a differentiable manifold M of dimension ''n'' is called parallelizable if there exist Smooth function, smooth vector fields \ on the manifold, such that at every point p of M the tangent vectors \ provide a Basis of a vector space, basis of the tangent space at p. Equivalently, the tangent bundle is a trivial bundle, so that the associated principal bundle of frame bundle, linear frames has a global section on M. A particular choice of such a basis of vector fields on M is called a Parallelization (mathematics), parallelization (or an absolute parallelism) of M. Examples *An example with n = 1 is the circle: we can take ''V''1 to be the unit tangent vector field, say pointing in the anti-clockwise direction. The torus of dimension n is also parallelizable, as can be seen by expressing it as a cartesian product of circles. For example, take n = 2, and construct a torus from a square of graph paper with opposite edges glued together, to get an idea of the two tangen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Immersion (mathematics)
In mathematics, an immersion is a differentiable function between differentiable manifolds whose differential pushforward is everywhere injective. Explicitly, is an immersion if :D_pf : T_p M \to T_N\, is an injective function at every point of (where denotes the tangent space of a manifold at a point in and is the derivative (pushforward) of the map at point ). Equivalently, is an immersion if its derivative has constant rank equal to the dimension of : :\operatorname\,D_p f = \dim M. The function itself need not be injective, only its derivative must be. Vs. embedding A related concept is that of an ''embedding''. A smooth embedding is an injective immersion that is also a topological embedding, so that is diffeomorphic to its image in . An immersion is precisely a local embedding – that is, for any point there is a neighbourhood, , of such that is an embedding, and conversely a local embedding is an immersion. For infinite dimensional manifolds, th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclic Group
In abstract algebra, a cyclic group or monogenous group is a Group (mathematics), group, denoted C_n (also frequently \Z_n or Z_n, not to be confused with the commutative ring of P-adic number, -adic numbers), that is Generating set of a group, generated by a single element. That is, it is a set (mathematics), set of Inverse element, invertible elements with a single associative binary operation, and it contains an element g such that every other element of the group may be obtained by repeatedly applying the group operation to g or its inverse. Each element can be written as an integer Exponentiation, power of g in multiplicative notation, or as an integer multiple of g in additive notation. This element g is called a ''Generating set of a group, generator'' of the group. Every infinite cyclic group is isomorphic to the additive group \Z, the integers. Every finite cyclic group of Order (group theory), order n is isomorphic to the additive group of Quotient group, Z/''n''Z, the in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


J-homomorphism
In mathematics, the ''J''-homomorphism is a mapping from the homotopy groups of the special orthogonal groups to the homotopy groups of spheres. It was defined by , extending a construction of . Definition Whitehead's original homomorphism is defined geometrically, and gives a homomorphism :J \colon \pi_r (\mathrm(q)) \to \pi_(S^q) of abelian groups for integers ''q'', and r \ge 2. (Hopf defined this for the special case q = r+1.) The ''J''-homomorphism can be defined as follows. An element of the special orthogonal group SO(''q'') can be regarded as a map :S^\rightarrow S^ and the homotopy group \pi_r(\operatorname(q))) consists of homotopy classes of maps from the ''r''-sphere to SO(''q''). Thus an element of \pi_r(\operatorname(q)) can be represented by a map :S^r\times S^\rightarrow S^ Applying the Hopf construction to this gives a map :S^= S^r*S^\rightarrow S( S^) =S^q in \pi_(S^q), which Whitehead defined as the image of the element of \pi_r(\operatorname(q)) under th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Stable Homotopy Group Of Spheres
In the mathematical field of algebraic topology, the homotopy groups of spheres describe how spheres of various dimensions can wrap around each other. They are examples of topological invariants, which reflect, in algebraic terms, the structure of spheres viewed as topological spaces, forgetting about their precise geometry. Unlike homology groups, which are also topological invariants, the homotopy groups are surprisingly complex and difficult to compute. The -dimensional unit sphere — called the -sphere for brevity, and denoted as — generalizes the familiar circle () and the ordinary sphere (). The -sphere may be defined geometrically as the set of points in a Euclidean space of dimension located at a unit distance from the origin. The -th ''homotopy group'' summarizes the different ways in which the -dimensional sphere can be mapped continuously into the sphere . This summary does not distinguish between two mappings if one can be continuously deformed to the oth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Homotopy Sphere
In algebraic topology, a branch of mathematics, a homotopy sphere is an ''n''-manifold that is homotopy equivalent to the ''n''-sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three .... It thus has the same homotopy groups and the same homology groups as the ''n''-sphere, and so every homotopy sphere is necessarily a homology sphere. The topological generalized Poincaré conjecture is that any ''n''-dimensional homotopy sphere is homeomorphic to the ''n''-sphere; it was solved by Stephen Smale in dimensions five and higher, by Michael Freedman in dimension 4, and for dimension 3 (the original Poincaré conjecture) by Grigori Perelman in 2005. The resolution of the smooth Poincaré conjecture in dimensions 5 and larger implies that homotopy spheres in those dimensions are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


H-cobordism
In geometric topology and differential topology, an (''n'' + 1)-dimensional cobordism ''W'' between ''n''-dimensional manifolds ''M'' and ''N'' is an ''h''-cobordism (the ''h'' stands for homotopy equivalence) if the inclusion maps : M \hookrightarrow W \quad\mbox\quad N \hookrightarrow W are homotopy equivalences. The ''h''-cobordism theorem gives sufficient conditions for an ''h''-cobordism to be trivial, i.e., to be C-isomorphic to the cylinder ''M'' × , 1 Here C refers to any of the categories of smooth, piecewise linear, or topological manifolds. The theorem was first proved by Stephen Smale for which he received the Fields Medal and is a fundamental result in the theory of high-dimensional manifolds. For a start, it almost immediately proves the generalized Poincaré conjecture. Background Before Smale proved this theorem, mathematicians became stuck while trying to understand manifolds of dimension 3 or 4, and assumed that the higher-dimensional cas ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Exotic Sphere
In an area of mathematics called differential topology, an exotic sphere is a differentiable manifold ''M'' that is homeomorphic but not diffeomorphic to the standard Euclidean ''n''-sphere. That is, ''M'' is a sphere from the point of view of all its topological properties, but carrying a smooth structure that is not the familiar one (hence the name "exotic"). The first exotic spheres were constructed by in dimension n = 7 as S^3- bundles over S^4. He showed that there are at least 7 differentiable structures on the 7-sphere. In any dimension showed that the diffeomorphism classes of oriented exotic spheres form the non-trivial elements of an abelian monoid under connected sum, which is a finite abelian group if the dimension is not 4. The classification of exotic spheres by showed that the oriented exotic 7-spheres are the non-trivial elements of a cyclic group of order 28 under the operation of connected sum. These groups are known as Kervaire–Milnor groups. Mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Smooth Structure
In mathematics, a smooth structure on a manifold allows for an unambiguous notion of smooth function. In particular, a smooth structure allows mathematical analysis to be performed on the manifold. Definition A smooth structure on a manifold M is a collection of smoothly equivalent smooth atlases. Here, a smooth atlas for a topological manifold M is an atlas for M such that each transition function is a smooth map, and two smooth atlases for M are smoothly equivalent provided their union is again a smooth atlas for M. This gives a natural equivalence relation on the set of smooth atlases. A smooth manifold is a topological manifold M together with a smooth structure on M. Maximal smooth atlases By taking the union of all atlases belonging to a smooth structure, we obtain a maximal smooth atlas. This atlas contains every chart that is compatible with the smooth structure. There is a natural one-to-one correspondence between smooth structures and maximal smooth atlases. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

PL Manifold
In mathematics, a piecewise linear manifold (PL manifold) is a topological manifold together with a piecewise linear structure on it. Such a structure can be defined by means of an atlas (topology), atlas, such that one can pass from chart (topology), chart to chart in it by piecewise linear functions. This is slightly stronger than the topological notion of a Triangulation (topology), triangulation. An isomorphism of PL manifolds is called a PL homeomorphism. Relation to other categories of manifolds PL, or more precisely PDIFF, sits between DIFF (the category of smooth manifolds) and TOP (the category of topological manifolds): it is categorically "better behaved" than DIFF — for example, the Generalized Poincaré conjecture is true in PL (with the possible exception of dimension 4, where it is equivalent to DIFF), but is false generally in DIFF — but is "worse behaved" than TOP, as elaborated in surgery theory. Smooth manifolds Smooth manifolds have canonical PL structu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Kervaire Manifold
In mathematics, specifically in differential topology, a Kervaire manifold K^ is a piecewise-linear manifold of dimension 4n+2 constructed by by plumbing together the tangent bundles of two (2n+1)-spheres, and then gluing a ball to the result. In 10 dimensions this gives a piecewise-linear manifold with no smooth structure. See also * Exotic sphere In an area of mathematics called differential topology, an exotic sphere is a differentiable manifold ''M'' that is homeomorphic but not diffeomorphic to the standard Euclidean ''n''-sphere. That is, ''M'' is a sphere from the point of view of ... References * * * Differential topology Manifolds {{differential-geometry-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homotopy Group
In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted \pi_1(X), which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or '' holes'', of a topological space. To define the ''n''th homotopy group, the base-point-preserving maps from an ''n''-dimensional sphere (with base point) into a given space (with base point) are collected into equivalence classes, called homotopy classes. Two mappings are homotopic if one can be continuously deformed into the other. These homotopy classes form a group, called the ''n''th homotopy group, \pi_n(X), of the given space ''X'' with base point. Topological spaces with differing homotopy groups are never homeomorphic, but topological spaces that homeomorphic have the same homotopy groups. The notion of homotopy of paths was introduced by Camille Jordan. Introduc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]