Amicable Triple
In mathematics, an amicable triple is a set of three different numbers so related that the ''restricted'' sum of the divisors of each is equal to the sum of other two numbers. In another equivalent characterization, an amicable triple is a set of three different numbers so related that the sum of the divisors of each is equal to the sum of the three numbers. So a triple (''a'', ''b'', ''c'') of natural numbers is called amicable if ''s''(''a'') = ''b'' + ''c'', ''s''(''b'') = ''a'' + ''c'' and ''s''(''c'') = ''a'' + ''b'', or equivalently if σ(''a'') = σ(''b'') = σ(''c'') = ''a'' + ''b'' + ''c''. Here σ(''n'') is the sum of all positive divisors, and ''s''(''n'') = σ(''n'') − ''n'' is the aliquot sum In number theory, the aliquot sum ''s''(''n'') of a positive integer ''n'' is the sum of all proper divisors of ''n'', that is, all divisors of ''n'' other than ''n'' itself. That is, :s(n)=\sum\nolimit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Set (mathematics)
A set is the mathematical model for a collection of different things; a set contains '' elements'' or ''members'', which can be mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other sets. The set with no element is the empty set; a set with a single element is a singleton. A set may have a finite number of elements or be an infinite set. Two sets are equal if they have precisely the same elements. Sets are ubiquitous in modern mathematics. Indeed, set theory, more specifically Zermelo–Fraenkel set theory, has been the standard way to provide rigorous foundations for all branches of mathematics since the first half of the 20th century. History The concept of a set emerged in mathematics at the end of the 19th century. The German word for set, ''Menge'', was coined by Bernard Bolzano in his work ''Paradoxes of the Infinite''. Georg Cantor, one of the founders of set theory, gave the following defin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Aliquot Sum
In number theory, the aliquot sum ''s''(''n'') of a positive integer ''n'' is the sum of all proper divisors of ''n'', that is, all divisors of ''n'' other than ''n'' itself. That is, :s(n)=\sum\nolimits_d. It can be used to characterize the prime numbers, perfect numbers, "sociable numbers", deficient numbers, abundant numbers, and untouchable numbers, and to define the aliquot sequence of a number. Examples For example, the proper divisors of 12 (that is, the positive divisors of 12 that are not equal to 12) are 1, 2, 3, 4, and 6, so the aliquot sum of 12 is 16 i.e. (1 + 2 + 3 + 4 + 6). The values of ''s''(''n'') for ''n'' = 1, 2, 3, ... are: :0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 16, 1, 10, 9, 15, 1, 21, 1, 22, 11, 14, 1, 36, 6, 16, 13, 28, 1, 42, 1, 31, 15, 20, 13, 55, 1, 22, 17, 50, 1, 54, 1, 40, 33, 26, 1, 76, 8, 43, ... Characterization of classes of numbers The aliquot sum function can be used to characterize several notable classes of numbers: *1 is the only number whose ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Divisor Function
In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as ''the'' divisor function, it counts the ''number of divisors of an integer'' (including 1 and the number itself). It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important Modular arithmetic, congruences and identity (mathematics), identities; these are treated separately in the article Ramanujan's sum. A related function is the divisor summatory function, which, as the name implies, is a sum over the divisor function. Definition The sum of positive divisors function σ''z''(''n''), for a real or complex number ''z'', is defined as the summation, sum of the ''z''th Exponentiation, powers of the positive divisors of ''n''. It can be expressed in Summation#Capital ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Natural Number
In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called ''Cardinal number, cardinal numbers'', and numbers used for ordering are called ''Ordinal number, ordinal numbers''. Natural numbers are sometimes used as labels, known as ''nominal numbers'', having none of the properties of numbers in a mathematical sense (e.g. sports Number (sports), jersey numbers). Some definitions, including the standard ISO/IEC 80000, ISO 80000-2, begin the natural numbers with , corresponding to the non-negative integers , whereas others start with , corresponding to the positive integers Texts that exclude zero from the natural numbers sometimes refer to the natural numbers together with zero as the whole numbers, while in other writings, that term is used instead for the integers (including negative integers). The natural ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Divisor Function
In mathematics, and specifically in number theory, a divisor function is an arithmetic function related to the divisors of an integer. When referred to as ''the'' divisor function, it counts the ''number of divisors of an integer'' (including 1 and the number itself). It appears in a number of remarkable identities, including relationships on the Riemann zeta function and the Eisenstein series of modular forms. Divisor functions were studied by Ramanujan, who gave a number of important Modular arithmetic, congruences and identity (mathematics), identities; these are treated separately in the article Ramanujan's sum. A related function is the divisor summatory function, which, as the name implies, is a sum over the divisor function. Definition The sum of positive divisors function σ''z''(''n''), for a real or complex number ''z'', is defined as the summation, sum of the ''z''th Exponentiation, powers of the positive divisors of ''n''. It can be expressed in Summation#Capital ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integer Sequences
In mathematics, an integer sequence is a sequence (i.e., an ordered list) of integers. An integer sequence may be specified ''explicitly'' by giving a formula for its ''n''th term, or ''implicitly'' by giving a relationship between its terms. For example, the sequence 0, 1, 1, 2, 3, 5, 8, 13, ... (the Fibonacci sequence) is formed by starting with 0 and 1 and then adding any two consecutive terms to obtain the next one: an implicit description. The sequence 0, 3, 8, 15, ... is formed according to the formula ''n''2 − 1 for the ''n''th term: an explicit definition. Alternatively, an integer sequence may be defined by a property which members of the sequence possess and other integers do not possess. For example, we can determine whether a given integer is a perfect number, even though we do not have a formula for the ''n''th perfect number. Examples Integer sequences that have their own name include: *Abundant numbers *Baum–Sweet sequence *Bell numbe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |